The Choice of Instruments

Economics of Climate Change
Washington, 2nd March 2006

Karsten Neuhoff
Senior Research Associate
Faculty of Economics, University of Cambridge
Correcting market failures

• Internalise CO$_2$ costs
 – Align market and welfare maximisation
• Technology policy
 – Compensate R&D and learning spill over
• Address barriers
 – Reduce delays before barriers are swept away
Policy instruments to internalise CO$_2$ costs

- National level
 - Taxes
 - Cap and Trade programs
 - Voluntary commitment
- The key to success
 - *Loud*: Receive management attention
 - *Long*: Commitment to drive investment decisions
 - *Legal*: Enforcement at firm level
Price matters: Energy intensity response

Reduction of national energy intensity vs. Increase in real oil price

- US Energy intensity
- Oil price
- UK Energy intensity

3 year averages are depicted

Karsten Neuhoff, 4
Example: Gasoline tax

Karsten Neuhoff, 5
Example: EU Emission Trading Scheme

Phase I
2005-07

Phase II
2008-12

Euro/tCO₂

Allocation plans by end of 2006

• Large emitters ~ ½ EU emissions are covered
• Current value 50 billion Euro/year
• EU directive requires 95% free allocation (90% phase II)
Allocation matters

- Production cost
- CO2 Cost
- Uniform updating value

Cost

- Coal
- Improved Coal
- Gas
- Usage efficiency

Efficiency increase
Technology/fuel choice
Substitute output

Auction / Grandfathering
Uniform updating
Fuel specific updating
Emission based updating

\[√ \]
Investment security – challenge for emission trading

Sustained international cost difference would effect energy intensive industry

Phase I
2005-07

Phase II
2008-12

Return on today’s investment

Efficient

Technology
Input choice
Consumption
Trade

Global internalisation

Output based benchmark

Border tax adjustment
International instruments

- Address free rider issue
- Enhance commitment of national governments
- Can also translate to economic instruments
 - Absolute target – Kyoto ‘simple’ and translates
 - Intensity based target on annual basis
 - Implies updating and prevents CO2 internalisation
 - GDP only one of drivers for energy demand
 - Pro-cyclical economic instrument
 - Intensity based long-term targets
 - Only a question of framing?
USA: Historic weak link energy - GDP

Total Final Consumption of Energy calculated in Million tonnes of oil equivalent from total supply by fuel source minus losses and transformations.
UK: Historic weak link energy - GDP

<table>
<thead>
<tr>
<th>Country</th>
<th>CO₂ Emissions</th>
<th>Intensity Level</th>
<th>Intensity (\div) CO₂ Ratio</th>
<th>Intensity Correlation with GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>2.42</td>
<td>1.56</td>
<td>0.64</td>
<td>-0.02</td>
</tr>
<tr>
<td>France</td>
<td>4.60</td>
<td>4.82</td>
<td>1.05</td>
<td>-0.11</td>
</tr>
<tr>
<td>Spain</td>
<td>5.37</td>
<td>5.09</td>
<td>0.95</td>
<td>-0.16</td>
</tr>
<tr>
<td>Sweden</td>
<td>7.21</td>
<td>7.37</td>
<td>1.02</td>
<td>-0.14</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2.70</td>
<td>2.92</td>
<td>1.08</td>
<td>-0.42</td>
</tr>
<tr>
<td>Japan</td>
<td>3.62</td>
<td>3.56</td>
<td>0.98</td>
<td>-0.11</td>
</tr>
</tbody>
</table>

The Case for Intensity Targets, Pizer, RFF, DP 05-02
Why active technology policy?

- ‘Pure’ market under-invests in technology
 - R&D and learning spill-over not internalised
- Is government action preferable?

Information asymmetry, Incentives?

Grants
Tax breaks
Strategic deployment

Are governments good at picking winners?

R&D
Learning
Application

Patents/secrecy promise returns

Restricts information flow, Monopoly limits competition
Experience curves motivate strategic deployment

Example Solar PV:

Learning rate effects cost
17% 55 billion €
20% 20 billion €
23% 10 billion €

5% discount rate
Why strategic deployment for energy I

- Homogeneous product has (almost) single price
- Regulated markets create risk for high profits
Example: Solar PV production

- Raw Silicon
- Ingot & cut wafer
- Process cell
- Encapsulation

Cost: ~10% ~30% ~30% ~30%

Product innovation: Coating: \(\text{TiO}_2 \) -> \(\text{SiN}_x \)

Process innovation: Wafer: 400um -> 200um
Why strategic deployment in energy II

- Complex product
 - Improvements of many technologies required
 - Inputs from many companies beneficial
- Target and incentivise public R&D support

Source: IEA PV Implementing Agreement, at http://www.oja-services.nl/iea-pvps/isr/index.htm
Internalisation of CO2 benefits new technologies

- Reduces investment: 38 to 20 billion €*
- Increases benefit 150 to 300 billion €
- Increases market confidence

* Break even price moves €40/MWh to €50/MWh, 5% discount, 2005-2040

Karsten Neuhoff, 17
Conclusion

- Internalisation of CO₂ externalities
- Technology policy
- Address barriers
- Using only subset of policies is inefficient