The Length of Contracts and Collusion

Richard Green and Chloé Le Coq
Reported trades by energy volume, Britain, 1 December 2004

<table>
<thead>
<tr>
<th>Length of contract</th>
<th>Electricity</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>2.1%</td>
<td>22.6%</td>
</tr>
<tr>
<td>Week</td>
<td>4.4%</td>
<td>10.5%</td>
</tr>
<tr>
<td>Month</td>
<td>29.1%</td>
<td>36.1%</td>
</tr>
<tr>
<td>Quarter</td>
<td>26.3%</td>
<td>14.3%</td>
</tr>
<tr>
<td>Season</td>
<td>38.1%</td>
<td>16.5%</td>
</tr>
</tbody>
</table>

Source: Heren
The issue

• Commodities sold on spot markets and via long-term contracts
• Contracts make one-shot spot markets more competitive (Allaz & Vila, JET, 1993)
• Repeated spot markets can have collusion
• Do contracts affect this?
 – One-period contracts make collusion worse, (Liski and Montero, JET, 2004)
 – Multi-period contracts, this paper
Timing: spot periods and contract rounds

<table>
<thead>
<tr>
<th>Spot market period</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda = 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda = 4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The spot market

- 2 firms, constant cost of \(c \) per unit
- Future discounted by factor \(\delta \)
- Demand is \(D(p) \)
 - Met by contract deliveries and spot sales
 - Does not depend on contract price
- Firms bid prices simultaneously
- Share market if prices are equal
- Lower bidder takes all spot sales if not
Collusion

• Grim trigger strategy
 – Agree collusive price of p^c
 – While collusion holds, set p^c and share sales
 – After defection, set price to c for ever

• Sustain collusion if $\delta \geq \frac{1}{2}$, *in the absence of contracts*
The contract market

• Sell forward contracts equal to proportion $x \in [0,1]$ of expected total sales
• Same amount delivered (& paid for) in each of λ spot periods until next contract round
• No arbitrage condition implies contracts sell for expected spot price
 – Can sell for p^c iff this is a sustainable collusive price in the spot market
Collusion with contracts

- Agree to sell $xD(p^c)/2$ contracts for p^c
- If collusion holds, bid p^c in spot market
- After defection,
 - bid c in spot market in every period
 - sell arbitrary volume of contracts for c
- If collusion holds, continue with contract sales as in previous rounds
- Don’t defect in a contract round!
Deviating in the spot market

- Choose the lower price of two options:
 - Undercut p^c by a small amount
 - Set residual monopoly price in spot market

p^m is the price a monopoly would set in the spot market

p^{Rm} is the price a monopoly would set in the residual spot market (net of contract sales)
The consequences of deviation

\[\text{Profit from colluding} \]
\[\text{Short-term gain from deviation} \]
\[\text{Loss during punishment} \]

\[\mathcal{D}(p) \]

\[c \]

Quantity per period

\[\mathcal{P}_c \]

\[\text{£/unit} \]
The consequences of deviation

- Initial protection from contracts
 - p_c
 - Loss during punishment
 - Short-term gain from dev.

Graph:
- £/unit
- Contracted output
- Quantity per period
- $D(p)$
- c

Legend:
- Blue: Initial protection from contracts
- Yellow: Loss during punishment
- Green: Short-term gain from dev.
Two effects

• Gain-cutting effect
 – reduces the initial gain from deviation, relative to collusive profit

• Protection effect
 – reduces the loss during the punishment, until the contracts expire
 – applies if contracts last more than one period
The consequences of deviation

£/unit

$ p^c $

Initial protection from contracts

Loss during punishment

Short-term gain from dev.

Contracted output

Quantity per period

$ D(p) $
Sustaining collusion

- Whether collusion is sustainable depends on δ, x, λ, and pc.
- Minimum δ rises as λ increases.
 - Protection effect grows stronger, collusion is harder.
- Minimum δ may rise or fall as x increases.
 - Both protection effect and gain-cutting effect grows stronger.
Maximum sustainable price

- Increases with the discount factor
 - Punishment has a greater weight, collusion is easier
- Decreases as contract length increases
 - Protection effect is stronger, collusion harder
- May rise or fall as \(x \) increases
 - Protection effect and gain-cutting effect are stronger
Linear case: Sustainable collusive prices with $\lambda = 1$

In region 1, deviate with a small price cut, in region 2, with a large one
Linear case: Sustainable collusive prices with $\lambda = 2$

In region 1, deviate with a small price cut, in region 2, with a large one
Linear case: Sustainable collusive prices with $\lambda = 4$

In region 1, deviate with a small price cut, in region 2, with a large one.
A surprising result?

For *any* discount factor and *any* contract length, given an appropriate level of contracts, firms can sustain *some* price above marginal cost.

But in general, longer contracts make collusion harder to sustain!