Are the British Electricity Trading and Transmission Arrangements Future-Proof?

Richard Green

University of Birmingham
(from September 2011, Imperial College London)
A timeline

- 1990: Electricity Pool of England & Wales
- 2001: New Electricity Trading Arrangements
- 2005: British Electricity Trading and Transmission Arrangements
- 2010: Electricity Market Reform
- 2020: UK target is 15% renewable energy
 \[= 30-40\% \text{ renewable electricity}\]
Three tasks

• Give generators the incentive to build new plants (and keep old ones open) if (and only if) the capacity is needed
• Connect generators to the system in a timely manner – if the latter can cope
• Promote efficient operation by the stations connected to the grid, while respecting physical constraints and reserve needs
BETTA’s market design

- Bilateral trading (mostly OTC and exchange-based; very limited auctioning) until GATE CLOSURE (1 hour to real time)
- National Grid trades in balancing mechanism to keep system stable
- Imbalances paid for surplus / shortage of generation or load (separately)
- No geographic prices
The challenge

- 15% of renewable energy by 2020
- 30-40% of renewable electricity
- 30 GW of wind?
 - Peak demand c 60 GW
- Even after “portfolio effects”, outputs will still fluctuate significantly
Hour-to-hour changes

- change in gross demand
- change in demand net of wind

Thinking Networks
Implication

• A liquid market in which companies can react to changes will be helpful
• BETTA’s short-term markets are illiquid
 – Vertical integration
 – Bilateral trading opaque
Load-duration curves for GB

ibid.
Implication

- A large amount of plant will not run very often
- Recovering fixed costs in an energy-only market will be risky
- BETTA relies on arbitrage to feed through revenues from the Balancing Mechanism
- NG’s reserve tenders are a back-up
Load-duration curves for Scotland

- Gross demand
- Demand net of wind

ibid.
Implication

• Transmission constraints bind more often
• Balancing Mechanism is slightly inefficient at resolving constraints and losses
• BETTA provides little incentive to avoid frequently-constrained sites
 – If you can get a connection!
Who should pay for congestion?

• New generators in an area?
 – Reduces profitability of entrants *for a given market price and level of renewable support*

• All the generators in a constrained area?
 – Better for entrants (see above); reduces incentive to avoid poor areas

• All generators
Possible improvements

• Establish and promote day-ahead and real-time auctions
• Set locational prices based on marginal costs – use these to manage congestion
• Use financial transmission contracts to lock in incumbents’ rents while giving operating incentives
• Capacity market to raise transparency
Electricity Market Reform

- Capacity market under consultation
 - Government favoured a “last resort” model
- Contracts for low-carbon generators
- Carbon price support
 - Supplementary tax + ETS price = pre-set path
- Emissions Performance Standard
 - Long-term right to run part-abated coal plant
Project TransmiT

- Ofgem review of transmission charging etc.
- Facilitate timely move to low carbon electricity with value for money
- Connection policy – should users commit? Should the TSO compensate for delay?
- Charging – should this be on energy or capacity? Should there be more geographical differentiation?
Academic Reports

- Cambridge, US, Strathclyde/Birmingham
- Two interim reports favoured nodal pricing
- One noted advantages of cost reflectivity and lack of stakeholder support
 - Energy-based charges are good for stations with low load factors
 - EMR allows for compensating changes in support to low-carbon generators