Capacity Mechanisms: management of Interconnectors and cross-border effects

David Newbery
University of Cambridge
Cambridge Spring Research Seminar
16th May 2014
http://www.eprg.group.cam.ac.uk
Outline

• What is the problem?
• Energy-only markets and capacity payments: theory
 – policy failures, price caps
• Proposed EMR capacity auction
 – defended by missing money (VOLL > max energy price)
 – complications: risk, market coupling rules
• Interconnectors: problems
What is the problem?

Ofgem’s derated capacity margin

Source: DECC IA
<table>
<thead>
<tr>
<th>Interconnectors by 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFA to France</td>
</tr>
<tr>
<td>Britned to NL</td>
</tr>
<tr>
<td>Moyle to NI</td>
</tr>
<tr>
<td>EWIC to RoI</td>
</tr>
<tr>
<td>NEMO to Belgium</td>
</tr>
<tr>
<td>Eclink to France</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

- potential swing 12 GW = 20% peak demand
- emergency SO actions cannot reverse IC flow

Key question - what contribution to derated capacity?

Poyry (2012): 50-80% depending on margins abroad
Energy-only markets

• If generators can (and are allowed to) bid scarcity prices no problem?
 – France (*de facto* monopoly) bids high peak prices
 – GB has adequate capacity and flat prices

• Wind, PV, cheap coal, low C prices drive clean spark spreads negative (in DE especially)
 – electricity prices affected by policy

=> *policy uncertainty undermines peaking investments needed*

Capacity contracts to address policy failure
France much peakier than GB

European power exchanges 2012

Graph showing the percent time price higher than various Euros/MWh values for France, UK MIP (Euros), Germany 2012, and Netherlands.
Capacity payments: theory

Efficient price = SMC + CP
SMC = system marginal cost, CP = capacity payment
CP = LoLP*(VoLL - SMC)

LoLP = Loss of Load Probability in each hour
LOLE = ▲ LoLP over year (Loss of Load Expectation)
set at 3 hrs in GB

=> VoLL = Value of Lost Load = £17,000/MWh

• Max price in Euphemia day-ahead = €3,000/MWh
 – Max price in France = €3,000/MWh
 – Max price in SEM (Ireland) = €1,000/MWh
Experience in the Pool and BETTA

- The Pool (1990-2001) had an explicit CP at LoLP*(VoLL-SMP), VoLL = £(2013)5,000/MWh
 - (but SMP is as bid, not SMC)
- NETA/BETTA was an energy-only market with a Balancing Mechanism, System Buy and Sell prices
 - reformed many times, long side defaults to prompt price
 - initially pay-as-bid, then average of last N MW
 - consulting on Significant Code Review to deal with 2015/16

How well did they signal scarcity?
Pool prices were peakier than spot market as they had a capacity payment.
CP in the Pool - 50% revenue in 1.8% (158) hours

PPP-SMP 1998-9 at 2012 RPI prices

capacity payment

percent total capacity revenue
Pool prices 1998-9 and System Buy Price 2008

Price duration curves Pool 1998-99 and Balancing 2008 at 2013 CPI prices

Balancing prices peakier than Pool
Imbalance prices not adequately marginal?
• Ofgem conducts **Significant Code Review** of BM

• Proposes:

 – single marginal price

 – load shedding bids at proxy Value of Lost Load

 • pVOLL = £3,000 rising to £6,000/MWh by 2018

 • DECC sets VOLL at £17,000/MWh

 – STOR bids in at $f(pVOLL,LoLP)$

BM price has never hit even £3,000/MWh

Missing money: 3hrs(£17,000-6,000)/MWh
Capacity to be replaced

Seems small - can it be covered by interconnectors?

Source: DECC IA
• Pay-as-clear descending clock auction in 2014 for delivery 2018/19
 – max energy price assumed £6/kWh
 – LOLE = 3 hrs => VOLL = £17/kWh
 – => missing money = 3 hrs*(17-6)/kWh = £33/kW
• new build gets 15 yr contract at auction price
 – existing plant: 1 yr contract unless major refurbish
 • must be price taker unless good cause, entrants set price
 • existing plant can delay until later auction (2017)
• DSR auctioned from 2016: 1 yr contracts
Illustrative auction demand curve

Source: DECC·IA

- New plant sets high price for all
- No new plant and price is low

£75/kW year
Net benefit is difference between large producer surplus and large consumer loss. Initially adverse.
GB coupled to NWE 4/2/1

SEM not until 2016

SWE coupled to NWE 13/5/14
Issues with interconnectors

• Interconnectors increase security of supply
 – provided they are free to respond to scarcity
=> they should have a positive derated capacity
 – Poyry estimates 50-80%

• Efficient pricing benefits trading country
 – if partner mis-prices they lose
=> efficient pricing drives out inefficient pricing

• But Euphemia imposes €3,000/MWh cap
Cross-border capacity procurement

- EU wants any capacity market to be EU-wide
- What contract can deliver capacity from abroad?
 - How does specific foreign plant guarantee to export to GB in stress hours?
 - PTR defaults to FTR on the day, but GB price may not signal true scarcity (and there is a price cap)
 - Would it not likely do so anyway without a CP?
- Why not have a contract with the SO for imports over the interconnector in stress hours?
 - Devolve to SO securing supply
 - or SO auctions for capacity over IC?
Investment in interconnectors

• The economics of investment look good anyway
 – and get better with more wind, PV, carbon price floor
• recognising contribution to security increases value
 – DC interconnectors are controllable
 – GB Interconnectors are logical suppliers of capacity
• problem: TO’s cannot contract for generation
 – but SO (abroad) could run auction for capacity and access
 => rent collected by ICs

EU open access to CP needs firm access to ICs and penalties for non-delivery
Conclusions

• Theory of scarcity pricing clear
 – leads to $CP = \text{LoLP} \times (\text{VoLL} - \text{SMC})$
 – energy-only markets could do this in theory
 • and hedge with reliability options

• main failures: policy uncertainty and price caps
 – and lack of credible distant futures markets

• Capacity markets can address these
 – but potentially large transfers from consumers

And need much higher Euphemia price cap
Appendix

Capacity Mechanisms: management of Interconnectors and cross-border effects

David Newbery

University of Cambridge

Cambridge Spring Research Seminar

16th May 2014

http://www.eprg.group.cam.ac.uk
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>Balancing mechanism (or market)</td>
</tr>
<tr>
<td>CONE</td>
<td>Cost of new entry (net = net of revenue from selling power)</td>
</tr>
<tr>
<td>CP, CM</td>
<td>Capacity payment, capacity market</td>
</tr>
<tr>
<td>DSR</td>
<td>Demand side response</td>
</tr>
<tr>
<td>EMR</td>
<td>(UK) Electricity Market Reform</td>
</tr>
<tr>
<td>F(P)TR</td>
<td>Financial (physical) transmission right</td>
</tr>
<tr>
<td>IC</td>
<td>Interconnector</td>
</tr>
<tr>
<td>LOLE</td>
<td>Loss of load expectation = ♦ LoLP over year</td>
</tr>
<tr>
<td>LoLP</td>
<td>Loss of Load probability</td>
</tr>
<tr>
<td>PV</td>
<td>Photo voltaic</td>
</tr>
<tr>
<td>SEM</td>
<td>Single Electricity Market for Ireland</td>
</tr>
<tr>
<td>SMC(P)</td>
<td>System marginal cost (price)</td>
</tr>
<tr>
<td>SO</td>
<td>System operator</td>
</tr>
<tr>
<td>SRMC</td>
<td>Short-run marginal cost</td>
</tr>
<tr>
<td>STOR</td>
<td>Short-term operating reserve</td>
</tr>
<tr>
<td>TEM</td>
<td>Target Electricity Market</td>
</tr>
<tr>
<td>TO</td>
<td>Transmission owner</td>
</tr>
<tr>
<td>VOLL</td>
<td>Value of Lost Load (£17,000/MWh in GB)</td>
</tr>
</tbody>
</table>
References

• DECC (2102) Electricity Market Reform – Capacity Market Impact Assessment at

Capacity payments in Irish SEM

• Bidding Code of Practice requires generation to bid into Pool at SRMC

=> missing money => CP based on VoLL & LoLP

• generators get *ex post* system MC (SMC) + CP

• VoLL scaled to deliver adequate payment for new entry, paid part on *ex ante* LoLP, part on *ex post*
 – stabilises revenue, reduces volatility

• paid on imports, charged to exports

ex post pricing incompatible with TEM
SEM Capacity Payments 2012 and 2013

Average €7/MWh

50% revenue in 12% hours

Average €7/MWh
Base case: each country matches average production to consumption arbitrages over coupled IC’s, no shared balancing or reserves

Source: DG ENER (2013)