From innovation to industrialization: Enedis approach to unleash new business models
7th of July – Alexis Phélizon
Power Distribution is undergoing a significant change in its model

The target is the Energy Transition which is a major concern of public and local authorities, and of the citizens

- A further development of **renewable energies** (notably solar and wind generation)
- The progressive arrival of **electric mobility** and **recharging infrastructures**
- A willingness of more **efficiency** and **management of power demand**
- The development of **electricity usages** allowing the consumer to **manage** more actively **their consumption**
The public distribution network is at the core of this dynamic

In France, the distribution network irrigates territories with 1.3 million km of medium and low voltage networks and is directly linked to the energy transition.

Key figures

- 404,000 new customers connected
- 11 million field operations
- 21 GW of RES connected to distribution network (end Dec 2016, 356,000 sites)

Rise of renewable energy generation (95% of renewable energy sources are connected to the public distribution network)

Wind generation
PPI/PPE * 2023 horizon : 22.5 GW

Solar generation
1 million sites in 2020
PPI/PPE * 2023 horizon : 19 GW

Management of power demand
Information
Piloting
35 millions of customers

Evolution of consumers habits towards more energy sobriety

Electric vehicle
~ 500,000 EV in 2020
Obj of the energy transition law ; 7 million charging stations in 2030

* PPI / PPE = multiannual investments program / energy program

from innovation to industrialisation
Enedis has to answer the expectations of the different actors of the territories

- The integration of a larger amount of intermittent renewable energy generation at interesting costs and delays for producers

- The access to more informations on consumptions to increase the awareness on managing the power demand

- The conservation of a high quality of furniture to make the territories more attractive and to facilitate their socio-economical development

- The exploitation of the local energy resources and the development of more flexible usages

- The stimulation of the ecosystem to encourage the innovation of SME/start-up (in particular through an open data approach)
To do so, Enedis is innovating with a program of 26 Smart Grids projects in France and in Europe.

A set of pilot projects at the service of a new industrial dynamic which rallies a hundred partners.

- Projects led in France
 - Poste Intelligent
 - SoMel SoConnected
 - BienVenu
 - IssyGrid
 - Solenn
 - Houat et Hoëdic
 - Smart Grid Vendée
 - Pilotes Linky
 - SOGrid
 - InfiniDrive
 - InterFlex
 - Démo France
 - Watt&Moi
 - Greenlys

- Projects led at a European scale
 - InterFlex
 - Advanced
 - SoMel So Connected
 - Grid4EU
 - Smart Electric Lyon
 - GRID4EU Nice Grid
 - Houat & Hoëdic

This innovative program covers a wide range of Smart Grids issues (technical and/or systemic).

From innovation to industrialisation
Some of the projects are achieved and have provided results

Focus on 3 dimensions that have a link with expectations of the different actors (producers, collectivities, consumers, new entrants, ...)

- **Renewable energy sources integration and storage**: Successfull experimentation of solutions **enhancing the capacity of the distribution grid** to integrate renewable energy sources.

- **Flexibility and economic models**: Experimentation in real condition of several kind of flexibilities (ToU tariffs, peak shaving programs) demonstrating **a potential and the necessity to proceed to further experiments**.

- **Data management**: Successfull experimentation of solutions to **share data from smart meters with consumers and/or third parties**, raising their awareness to contribute to energy conservation.
Focus on main results

- Development of promising forecasting tools of renewable generation and power demand
- **Experimentation of dynamic voltage control on MV and LV networks**
- Effective implementation of MV and LV real time network state estimator (ex: tracking of the variations of LV voltage plan)
- **Study of a smart connection of RES on MV network (modulation of power)**
- Successful integration of electricity storage based on Lithium-ion technology at different levels of the network
- **Optimization of the use of electricity storage by a multi-actor/multi-service approach**

Illustrations

Experimentation of dynamic voltage control on the MV network, based on:
- Voltage sensors installed on the network
- Transmission of data from sensors and from generation sites (based on a permanent communication) to the regional control center
- Pre-industrial implementation of a digital control/command solution at the primary substation
- Real time state estimation of the network
- Action on the On load-tap changer of the primary substation

Connection, installation and operation of storage systems at different levels of the network (primary and secondary substation, LV network, customer)
Focus on main results

- Observation of a power rebound of 25 to 50% of the curtailed power and an energy report of 95% of the curtailed power
- Necessity of a coordination between DSO and aggregator
- Ability to aggregate flexibilities in summer and winter in order to shift energy consumption or reduce consumption peak
- In order to solve strains on LV network, requirement of a large number of flexibility consumers participating in flexibility programs
- Demonstration of the local and temporary nature of the value from the point of view of the DSO
- Need of an accurate vision of local situations and their medium-term evolution in order to target efficiently the deployment of smart grid solutions
- Necessity to consider a multi-service and coordinated usage of the material in order to maximize the value

Examples

- Observation of a power rebound of 25 to 50% of the curtailed power and an energy report of 95% of the curtailed power

Individual curtailments of 300 LV customers

In summer, shifting of consumption in solar period from 12 am to 4 pm (25%/client in average which represents 5% of extra consumption in the area)

In winter, reduction in consumption during the peak period from 6 pm to 8 pm (21%/client in average which represents 2% of HV/MV substation power)
Focus on main results

- Experimentation of a system to management customer consent to share its personal data.
- Automation of the chain from collection of raw data to publication of consumption data (load curves and daily consumption), in compliance with the regulatory framework and the security constraints.
- Implementation of a web portal to visualize individual consumption data.
- Implementation of a platform contributing to energy conservation through individual coaching and animation.

Example image
While the experiment are conducted, the obtained results are contributing to the industrialization of smart grids by Enedis

The collaborative innovation dynamic launched by Enedis in 2011 continues

- Enabling the collaboration of partners in consortium gathering all the stakeholders of the electric system (collectivities, local authorities, manufacturers, SMB, network operators, research laboratory, universities,...)

- Mobilizing and combining investments efforts

- Developing robust technologies to tackle the future challenges for the networks

- Enriching the reflexions on the economic models linked with smart grids and their viability for all the actors of the system

The results are contributing to the 2018 horizon roadmap of Enedis to modernize the distribution network management and to support the actors of the electric system and the territories

Solutions of the roadmap based on the demonstrators results
from innovation to industrialisation
In addition, an economic assessment of smart grids for distribution network has been realised

Clarify, in the French Context, the debate regarding economic potential and deployment methods with the government and the industry

A key step in the industrialisation of initial smart grid solutions
- Economic rationale to set deployment strategies
- Gains to accelerate the energy transition

A work produced in collaboration with ADEeF, ADEME and RTE that responds to the request of two ministries and integrates within the industrial DSO strategy of Enedis

Full report (in French) and executive summary (in English) available at the following urls
A methodology that guarantees relevant and useful results

Cost benefit approach of the collective value advocated by the JRC and the EPRI

Assessment of each solution based on Enedis actual decision tools to ensure the coherence of the results

6 advanced functions were studied based on their relevance, maturity and role in the system

Two different deployment plans depending on the function

- **National deployment**
 - Enable the evolution of the infrastructure
 - Information services or automated mechanisms that can be integrated in a generalised industrialisation process

- **Local deployment**
 - Respond to local constraints and support the energy transition

from innovation to industrialisation
Each of the function offers a positive gain for the whole grid

Benefits and costs of the solutions studied up to 2030

<table>
<thead>
<tr>
<th>National deployment</th>
<th>Operational planning systems</th>
<th>Self-healing extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs and benefits for the distribution network</td>
<td>-24</td>
<td>+93</td>
</tr>
<tr>
<td></td>
<td>-0.6</td>
<td>+35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+€34.4m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local deployment</th>
<th>Centralised voltage control</th>
<th>Self-adaptive reactive power control of DG</th>
<th>Active power curtailment of DG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average costs and benefits per transmission substation</td>
<td>-215</td>
<td>+340</td>
<td>+€125k</td>
</tr>
<tr>
<td></td>
<td>-60</td>
<td>+560</td>
<td>+€500k</td>
</tr>
<tr>
<td></td>
<td>-150</td>
<td>+770</td>
<td>+€620k</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local deployment</th>
<th>Flexibility to alleviate demand constraints</th>
<th>Implementation costs</th>
<th>Investment postponement gain</th>
<th>Network operation gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average costs and benefits per transmission substation</td>
<td>variable depending on the local flexibility service</td>
<td>between €0 and €24k/MW/year depending on the local situation</td>
<td>between €0 and €20k/MWh depending on the local situation</td>
<td></td>
</tr>
</tbody>
</table>

- Costs: assets, development, curtailed energy ...
- Benefits: diminution of lost load/curtailment, postponed investments

From innovation to industrialisation
Direct meaningful effects for the benefit of local energy transition

Improved insertion of DG thanks to an optimised use of the existing network

<table>
<thead>
<tr>
<th>National deployment</th>
<th>Operational planning systems</th>
<th>Between 80 and 200 GWh of additional renewable energy produced per year by existing installations at the same cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local deployment</td>
<td>Self-adaptive reactive power control of DG</td>
<td>Savings of between €90k and 100k/MW on connection costs thanks to self-adaptive reactive power control and active power curtailment</td>
</tr>
<tr>
<td></td>
<td>Active power curtailment of DG</td>
<td>Connection of an additional 720 MW of MV production in the existing network by 2030 thanks to MV curtailment</td>
</tr>
</tbody>
</table>

Improved resilience of the electricity grid

| National deployment | Self-healing extension | Reconnection of customers as much as 25 minutes faster than before in the event of an incident in a substation |
Enedis, distribution system operator, is committed alongside local collectivities and electric system actors

- Helping in **consuming better** by saving energy and by reducing **consumption peaks** thanks to data provision
- Facilitating the development of **electric mobility**
- Supporting the development of the **renewable energy generation**
- Developing the network at the **best price** to tackle the **energy transition challenges**
- Contributing to the **economic growth** and to the **attractiveness of territories**
- Ensuring a **quality public service**