The political economy of rent allocation

David Newbery

Power market design and the Renewables Directive

Brussels 10 June 2010

http://www.electricitypolicy.org.uk
Outline

• **Renewables Directive** ⇒ massive wind
• Requires fundamental changes
 – more interconnection and pumped storage
 – Congestion management, plant operation
 – Location/type of generation and **nodal pricing**
 – Treatment of existing assets
• Changes risk rent redistribution
 – which will be opposed by losers

Design transition arrangements carefully
Implications of massive wind

• **Much greater price volatility**
 – mitigated by nodal pricing in import zones
 – requires CfDs and nodal reference spot price

• **Balancing needs better wind forecasting**
 – helped by central dispatch

• **Reserves (much larger) require remuneration**
 – contracted ahead by SO?
Criteria for market design

• Foster competition and entry => efficiency
• Incentives for timely, efficient (location and type) and adequate investment in G and T
 – reflecting comparative advantage
• Reflects social cost of carbon
• allow RD&D support without distortion
• deliver efficient dispatch
• at acceptable cost to consumers

without effective company opposition
Implications for Europe

• European market operates as integrated whole
 – efficient Europe-wide dispatch
 – efficient SO/balancing across borders
• Renewables built where cheapest
 – but costs share equitably
• Cost-effective interconnection as needed
 – to reduce cost of intermittency
• With careful transition arrangements

None of these currently guaranteed
Summary of problems

• Losses not reflected in dispatch
• Intermittency requires better scheduling
• Constraints only reflected via balancing
 – BM often illiquid and hard to hedge
• T access often firm - all or nothing
• Locational signals weak or absent
Locational access pricing rare
The argument for change

• A flawed system can be improved
 => potentially everyone can be made better off

• The challenge:
 – identify the efficient long-run solution
 – that can co-exist with an evolving regime for incumbents
 – apply new regime to all new generation
 – which compensates incumbents for any change
 – while encouraging them to migrate
Spatial and temporal optimisation

=> nodal pricing + central dispatch

• Nodal price reflects congestion & marginal losses
 – lower prices in export-constrained region
 – efficient investment location, guides grid expansion

• Central dispatch for efficient scheduling, balancing

• Market power monitoring – benchmark possible

• PJM demonstrates that it can work
 – Repeated in NY, New England, California (planned)
Market solutions to RES

• Nodal pricing plus central dispatch
 – Leave nodal spot prices to determine dispatch
 – but ensure that RES subsidies are for availability not generation
 – Avoids negative wind bidding
• SO incentivised to balance over 4 years
• RES support avoids negative bids
 – subsidy for availability, not generation?
GB objections to nodal pricing

• Disadvantages Scottish generators
 – but would benefit voting Scots consumers!

=> Large revenue shifts for small gains

• All earlier attempts thwarted by courts

=> need to compensate losers

Need to make change *before* large investments made (wind + transmission)
Transition for existing plant

• Existing G receives long-term transmission contracts for grid TEC charges
 – fixed volume based on past output?
 – pays reference node price less local node /MWh
• for output above this, sell at LMP
⇒ G significantly better off than at present
⇒ intermittent generation receives nodal price

Challenge: devise contracts without excess rents that facilitate efficient wind entry
Politics and design choices

• Liberalised markets vs Centralised solutions?
• But SEM requires market approach
 – or revert back to more costly individual solutions
• Will need to sort our Cross-Border Tariffication
 – but only needed for new transmission investment
• Central dispatch or US-style OASIS reporting
 – to ensure efficient use of RES and interconnectors

Challenging to devise necessary route map
Conclusions

- Renewable electricity poses major challenges
 - requires *and currently lacks*
 - efficient transmission access regime
 - efficient market design for dispatch and balancing
 - efficient information sharing for efficient interconnector use

- Wind puts stresses on current market design => nodal pricing, central dispatch and enhanced SO

- Requires transition arrangements/contracts
 - for new/old generation

Reforming markets requires transition contracts
The political economy of rent allocation

David Newbery

Power market design and the Renewables Directive

Brussels 20 April 2010

http://www.electricitypolicy.org.uk
Acronyms

BM: balancing market
CfD: Contract for Difference
G: generation
LMP: Locational Marginal Pricing or nodal pricing
OASIS: Open Access Same-Time Information System and Standards of Conduct,
 See FERC Stats and Regs ¶ 31,093 (2000).
RES: Renewable electricity supply
SO: System Operator
T: Transmission
TEC: Transmission entry capacity