List of All Sustainability Indicators

Table A.1: Nuclear Energy Indicators used in Previous Sustainability Reports. In the Reference column, capitalised letters denote indicators which are explicitly mentioned. Lower-case letters denote indicators which are inferred either individually or as part of a group.

A, a: denotes Reference (1).

B, b: denotes Reference (2).

C, c: denotes Reference (3).

D, d: denotes Section 8 of Reference (4).

E, e: denotes Section 2 of Reference (4).

F, f: denotes Reference (5).

G, g: denotes Reference (6).

H, h: denotes Reference (7).

I, i: denotes Reference (8).

Indicator	Indicator	Reference
Label		
E1	Global Warming Potential [kg(CO ₂)eq/kWh]	A, b, E, F,
		g, h, I
E2	Freshwater Eco-toxicity Potential [kg(1-,4-DCB)eq/kWh]	A, b, e, g, h, i
		A, b, e, g,
E3	Marine Eco-toxicity Potential [kg(1-,4-DCB)eq/kWh]	h, i
		A, b, E, g,
E4	Ozone Depletion Potential [kg(CFC-11)eq/kWh]	h
F.5	A 11'C D (111 (00) // W/11	A, b, E, g,
E5	Acidification Potential [kg(SO ₂)eq/kWh]	h, i
E6	Eutrophication Potential [kg(PO ₄ ³⁻)eq/kWh]	A, b, E, g,
EO	Europinication Potential [kg(PO ₄)eq/kWil]	h, i
E7	Photochemical Smog Potential [kg(C ₂ H ₄)eq/kWh]	A, b, e, g,
		h, i
E8	Land Occupation [m²yr/kWh]	A, b, e, f, i
E9	Greenfield Land Use [%]	A, b, e, f, i
E10	Terrestrial Eco-toxicity Potential [kg(1,4-DCB)eq/kWh]	A, b, e, g, h, i
E11	Recyclability of Input Materials [%]	A
E12	Freshwater Consumption [1]	В
E13	Freshwater Withdrawals [1]	В
E14	Disposal Space [m ² /yr] or [ha/GWh]	B, e, f
E15	Noise Pollution	E, I
E16	Change of Landscape	E, I
E17	Bio-Diversity/Species "Eco-system"	E
E18	Release of Hydrocarbons Following Accident [tCO ₂ eq/kWh]	I
E19	Area of Land Contaminated from Nuclear Accident [km²/kWh]	I
E20	Application of ALARP to Limit Environmental Effects	Н
E21a	Use of Abiotic Resources (Elements) [kg Sb(eq)/kWh]	A, I
E21b	Use of Abiotic Resources (Fossil Fuels) [MJ/kWh]	A, E, I
E21c	Use of Aluminium	E, g
E21d	Use of Iron	E, g

E21e	Use of Copper	E, g
E21c E21f	Use of Other Non-Renewable Natural Resources	
E211 E21g	Use of Other Renewable Natural Resources	g, H G
EZI	Ose of Other Reflewable Natural Resources	U
T1	Total Levelised Cost of Electricity [£/kWh]	A, H, I
T1a	Total Cost of Electricity [£/kWh]	B
T2	Capital Cost [£]	F, G, H, I
T2a	Capital Cost (Reactor) [£]	A, D
T2b	Overnight Construction Costs (LCC) [£]	C
T2c	Overnight Construction Costs (Risk to Capital) [£]	b, C
T3	Operation and Maintenance Cost [£/kWh]	6, C A, D
T3a	Marginal Cost [£/kWh]	G
T3b	Waste Operational Costs (Interim Storage to DGD) [£/kWh]	Н
T3c	Decontamination and Decommissioning Costs (Reactor) [£/kWh]	D, f, H
T3d		
	Total Repository Cost [£]	D, f, H
T4	Levelised Fuel Cycle Cost [£/kWh]	A, B, D, f
T5	Fuel Price Sensitivities [£/kWh]	A, I
T6	Financial Incentives [£/kWh]	A
T7	Disposal Costs [£/kWh]	В
T8	Discount Rate [%]	G
T9a	U ₃ O ₈ Consumption [kg/kWh]	B, G, H
T9b	ThO ₂ Consumption [kg/kWh]	Н
T10	Cost of Raw Materials [£/U ₃ O ₈]	c, F, g
T11	Cost of Separation Work [£/SWU]	c, F, g
T12	Cost of Conversion [£/UO ₂]	c, F, g
T13	Cost of Fabrication [£/Fuel Form]	c, F, g
T14	Cost of Storage [£/Fuel Form]	c, F, g
T15	Cost of Reprocessing [£/UO ₂ _Rep]	c, F, g
T16	Cost of Transport [£.kg/km]	c, F, g
T17	Cost of Encapsulation and Condition [£/kg(SF)]	F
T18	Cost of Disposal [£/kg(SF)]	F
T19	Cost of Governmental Research [£]	d, F
T20	Cost of Non-Governmental Development [£]	d, F
T21	Cost of Basic R&D [£]	d, F
T22	Cost of Laboratory/Process [£]	d, F
T23	Cost of Pre-Industrial [£]	d, F
T24	Cost of Industrial [£]	d, F
T25	Capacity Factor [%]	A, i
T26a	Availability Factor [%]	A, I
T26b	Forced Outage Rate	C
T27	Technical Dispatchability [Rank]	A, H, i
T28	Economic Dispatchability [#]	A, H
	Lifetime of Global Uranium Reserves at Current Extraction Rates	
T29a	[kgU]	A, C, I
	Lifetime of Global Thorium Reserves at Current Extraction Rates	
T29b	[kgTh]	This Work
	[[Kg111]	

T30	Plant Flexibility [yr ⁻¹]	A, H
T31	Construction Duration (LCC) [£/yr]	C
T32a	Construction Duration (Risk to Capital) [£/yr]	b, C
T32b	Time Between Plant Start-Up and Start of Construction [yr]	A, I
T32c	Technological Innovation/Improvements [Patents/kWh]	G
T33	Added Value "Income Generation"	E
T34	R/P Ratio	E
T35a	Energy Recovered per kgU	F, H
T35b	Energy Recovered per kgCl	H
1330		п
T35c	Energy Recovered per kg of Limited Non-Renewable Resource Consumed	Н
T36a	Ratio of Necessary Energy Input to Obtained Output	F, H
T36b	Power Available for Use in the Innovative Nuclear System	H
T37	Range of Ton-Kilometres Energy Intensity Ratio	F
T38	Cost of Incorporating Intrinsic and Extrinsic Measures to Improve PR	Н
T39	Availability of Waste Management Technology	H, I
T40	Time Required to Industrialise Waste Management Technology	Н
T41	Availability of Resources to Meet Radioactive Waste Demand	Н
T42	Financial Figures of Merit	Н
T43	Licensing Status	Н
T44	Financial Robustness Index of Innovative Nuclear System	Н
T45	Status of Legal Frameworks	Н
T46	Status of States Capability for the Nuclear Fuel Cycle	Н
T47	Availability of Credit Lines	Н
T48	Size of Installation	Н
T49	Availability of Infrastructure to Support Owner/Operator	Н
T50	Availability of Human Resources	Н
T51	Challenges in Licensing Technology (Qualitative Score)	This Work
SO1	Direct Employment [person-yrs/kWh]	A, E, f, g,
		I
SO2	Indirect Employment [person-yrs/kWh]	A, f, g
SO3	Proportion of Staff from Locality [%]	A
SO4	Spending on Local Suppliers [%]	A
SO5	Direct Investment in Local Community [%]	A
SO6	Corruption from Supplier Countries [Score]	A
SO7	Imported Fossil Fuel Avoided [toe/kWh]	A
SO8	Fuel Import Dependency	E, I
SO9	Diversity of Fuel Supply Mix [Score]	A, I
SO10	Fuel Storage Capabilities [GJ/m ³]	A
SO11	Education [# of Courses]	G
SO13	Mass of Depleted U [kg/kWh]	В
SO14	Public Health [£/kWh]	G
SO15	Change in Work Opportunity	F
SO16	Resettlement Necessities	E

0015	1 HD 111 A HAND (DAY)	D 0 11
SO17	"Public Acceptance" NIMBY/BANANA	E, f, H
SO18	"Risk Aversion" Kind of Risk Constraints	E, f
SO19	"Risk Aversion" Nature of Risk Source	E, f
SO20	"Risk Aversion" Dimensions of Risk Consequence	E, f
SO21	Human Toxicity Potential [kg (1,4-DCB)eq/kWh]	A
SO22	Volume of Liquid CO ₂ to be Stored [m ³ /kWh]	A
SO23	Autonomy of Resources	F
SO24	Induced Industrial Production	F
SO25	Long Term Commitment to Nuclear Option	H
SO26	Demand For and Price of Energy Products	Н
SO27	Information Provided to the Public	Н
SO28	Participation of the Public in Decision Making	H, I
SO29	Government Policy	Н
SO30	Attitude to Safety and Security	Н
SO31	Perceived Risk Characteristic from Normal Operation	I
SO32	Perceived Risk Characteristic from Accidents	I
SO33	Potential of Energy System Induced Conflicts	I
	6, 1 d d d d d d d d d d d d d d d d d d	
SA1a	Operational Accidents [#/yr]	B, F
SA1b	Calculated Frequency of Occurrence of Design Basis Accidents	H
	Calculated Frequency of Major Release of Radioactive Materials	
SA1c	into the Environment	Н
SA1d	Expected Frequency of Abnormal Operation and Accidents	Н
SA1e	Expected Frequency of Failures of Disturbances	H
SA2	Core Damage Frequency [#/yr]	B
SA3	Potential Damage of Severe Accidents (Range) [m]	E
SA3a	Consequence of Abnormal Operation	H
SA3b	Consequence of Accidents	H
SA4	Accident Exposures	C, H
SA4a	Health Impact of Accidents on Workers	E, h
SA4a SA4b	Health Impact of Accidents on Public	E, h
SA5a	Estimated Peak Dose Rate [mrem/yr]	B
SA5a SA5b	Maximum Individual Dose to Public	B, D
	Maximum Individual Dose to Public Maximum Individual Dose to Workers	· ·
SA5c		B, D
SA6	Fatalities Due to Large Accidents [# Fatalities/GWh]	A, I
SA6a	Worker Fatalities [# Fatalities/GWh]	A, D
SA6b	Maximum Credible Number of Fatalities per Accident	I
	[Fatalities/Accident]	
SA6c	Expected Number of Fatalities from Successful Terrorist Attacks	I
	[Ordinal]	
SA6d	Fatalities in Normal Operation (without Large Accident)	This Work
SA7	Number of Latent Cancer Fatalities [#]	В
SA8	Total Human Health Impacts from Radiation [DALY/GWh]	A, D, I
SA8a	Public Human Health Impacts from Radiation [DALY/GWh]	E
SA8b	Worker Human Health Impacts from Radiation [DALY/GWh]	A, E
SA8c	Reduced Life Expectancy Due to Normal Operation	I

	[YOLL/GWh]	
SA9a	Collective Dose to Public [mrem/yr]	B, c, D, f,
Silva		G, H
SA9b	Collective Dose to Workers [mrem/yr]	B, c, D, f,
		H
SA10	Discharged Waste Heat	B, C, E
SA11	Transports of Radioactive Waste[#]	В
SA12	Reliable Reactivity Control	C, h
SA13	Reliable Decay Heat Removal	C, h
SA14	Dominant Phenomena Uncertainty	С
SA15	Long Fuel Thermal Response Time	C, H
SA16	Integral Experiments Scalability	C, H
SA17	Source Term	С
SA18	Mechanisms for Energy Release	C
SA19	Long System Time Constraints	C, H
SA20	Long and Effective Holdup	C
SA21a	Passive Safety Features	C, H
SA21b	Active Safety Features	Н
SA22	Robustness of Design	Н
SA22a	Sub-Criticality Margins	Н
SA23a	High Quality of Operation	Н
SA23b	Capability to Inspect	Н
SA24	Reliability of Engineered Safety Features	Н
SA25	Number of Confinement Barriers Maintained	Н
SA26	Capability of Engineered Safety Features to Restore Innovative	Н
SAZU	Nuclear System to a Controlled State	11
SA27	Calculated Frequency of Major Release of Radioactive Materials	Н
SAZI	into Containment/Confinement	11
SA28	Ability to Control Relative System Parameters and Activity Levels	Н
3A20	in Containment	11
SA29	In-Plant Severe Accident Management	Н
SA30	Independence of Different Levels of DID	Н
SA31	Evidence that Human Factors are Addressed Systematically in the	Н
SASI	Plant Life Cycle	11
SA32	Application of Formal Human Response Models from Other	Н
SASZ	Industries or Development of Nuclear	11
SA33a	Stored Energy	Н
SA33b	Flammability	Н
SA33c	Criticality	Н
SA33d	Inventory of Radioactive Materials	Н
SA33e	Available Excess Reactivity	Н
SA33f	Reactivity Feedback	Н
SA34	Confidence in Innovative Components and Approaches	Н
SA35	Safety Concept Defined	Н
SA36	Clear Process for Addressing Safety Issues	Н
SA37	RD&D Defined and Performed and Database Developed	Н

SA38	Computer Codes or Analytical Methods Developed and Validated	Н
SA39	Scaling Understood and/or Full Scale Tests Performed	H
SA40	Degree of Novelty of the Process	H
SA41	Use of Risk Informed Approach	H
	Uncertainties and Sensitivities Identified and Appropriately Dealt	
SA42	With	H
SA43	Long Term Safety from Radioactive Waste	Н
SA44	Radioactive Emission Control Measures from Waste Management Facility	Н
SA45	Waste Forms	Н
WA0	Total Activity [Bq/GWh]	H
WA1	HLW Disposal Mass [kg/GWh]	B, c, g, h
WA2	HLW Disposal Volume [m³/GWh]	a, B, c, D, e, f, g, h, i
WA2a	Volume of Alpha-emitters from HLW	F F
WA2b	Volume of Gamma-emitters from HLW	f, h
WA3	HLW Radiological Hazard Potential	B
WA4	Thermal Output of HLW after 50 years	D
		a, c, D, e,
WA5	Volume of ILW	f, g, h, i
WA6a	Mass of ILW	c, g, h
WA6b	Mass of LLW	c, g, h
WA7	LLW Solid Waste (Volume) [m ³ /GWh]	a, B, c, D, e, f, g, h
WA7a	Volume of Alpha-Emitters from LLW	F, 1, g, 11
WA7b	Volume of Gamma-Emitters from LLW	f, h
WA8	LLW Gaseous Releases [kg/GWh]	B, c, g, h
WA9	Radiotoxicity of Gaseous Releases	c, D, e
WA10	LLW Liquid Releases [m ³ /GWh]	B, c, g, h
WA11	Radiotoxicity of Liquid Releases	c, D, e
		c, E, g, h,
WA12	Non-Radioactive Toxic Waste	I
WA13	Non-Radioactive Non-Toxic waste	C, E, g, h
WA14	Operational Waste	C, D, g, h
WA15	Decommissioning Waste	C, D, g, h
WA16	Length of Repository Gallery Required for Waste	D
WA17a	Time of Confined Alpha-Emitters	E, F
WA17b	Time of Confined Gamma-Emitters	E, F
WA18a	Radiotoxicity at 500 years	C, D
WA18b	Radiotoxicity at 10,000 years	C, D
WA18c	Radiotoxicity at 1,000,000 years	C, D
WA19a	Radiotoxicity Flux Released into the Biosphere (0-10,000 y)	C, D
WA19b	Radiotoxicity Flux Released into the Biosphere (10,000-100,000 y)	C, D
WA19c	Radiotoxicity Flux Released into the Biosphere (100,000-	C, D

	1,000,000 y)	
W/A 200		C D
WA20a	Dose to Human Intrusion at 300 years	C, D
WA20b	Dose to Human Intrusion at 10,000 years	C, D
WA21	Required Isolation Time (To Reach 10 mSv Intervention Level)	D, H
WA22	Appropriate Waste Classification Scheme	H
WA23	Time to Produce the Waste Form Specified for End State	H
WA24a	Waste Minimization Study	H
WA24b	Volume and Activity Reduction Measures	Н
WA25	Process Descriptions that Encompass the Entire Waste Cycle	Н
WA26	Neutron Emission Rate per Spent Fuel Assembly after 50 years	This Work
PR0	Proliferation Resistance	A, D, F, I
PR1	Mass of SNM [kg/GWh]	B, c, e, h
PR2	Required Enrichment Capacity [kgSWU/GWh]	B, e
PR3	Attractiveness of SNM	B, c, e, h
PR4	Mass of Separated Plutonium [kg/GWh]	B, c, e, h
PR5	Mass of Other Separated SNM/ANM [kg/GWh]	c, e, h
PR6	Extrinsic Proliferation Resistance	E, c, n
PR6a	Accountability of Nuclear Materials	H
PR6b	Amenability of Nuclear Materials	H
PR6c	Detectability of Nuclear Materials	H
PR7	Attractiveness of Nuclear Technology	H
PR8a	Difficulty to Modify Process	h
PR8b	Difficulty to Modify Facility Design	h
PR8c	Difficulty to Misuse Technology or Facilities	h
PR9	Redundancy of Intrinsic and Extrinsic PR Measures	H
PR10		H
	Robustness of Barriers Covering Each Acquisition Path PR Taken into Account Early as Possible in Design of INS	Н
PR11	,	
PR12	States Commitment, Policies and Obligations to Non-Proliferation	H
PR13	Verification of Extrinsic Measures by State and IAEA	Н
PP1	"Public Security" Measures Against Terrorist Attacks	E, I
PP2a	Competent PP Authorities Designated, Empowered (with	Н
112a	Responsibilities)	
PP2b	Legislative and Regulatory PP Framework Development	H
PP2c	Responsibilities of PP Between Authorities and Facility Operator Defined	Н
PP3a		Н
	Addressing of Synergies Between PR, PP, Safety and Operations	
PP3b	Accounting of PP in All INPRO Areas	Н
PP3c	Evidence of PP when Innovative Nuclear System is Shut- Down/Decommissioned	Н
PP4	Is There a Trustworthiness Program (with Established Criteria)	Н
PP5a	Has There Been Development of a Confidentiality Program	Н
PP5b	Has the Confidentiality Program Been Implemented Over All Levels	Н
PP6a	Is There Evidence of a DBT or Other Appropriate Threat	Н

	Statement Which Has Been Developed	
PP6b	Are There Provisions for Periodic Review of Threat by the State	Н
PP6c	Is There Evidence that the Concept of DBT (or Other) Been Used	Н
	to Establish the PP System	11
PP6d	Has the Designer Introduced Flexibility in PPS Design to Cope	Н
1100	with the Dynamic Nature of Threat	
PP7a	Judicial Consequences Defined For Malicious Acts Against	Н
DD7L	Nuclear Materials and Facilities	11
PP7b	Application of "Graded" Approach to PP Requirements Definition and Implementation of Quality Assurance Policies to	Н
PP8	PP	Н
	Security Culture Developed and Implemented for All	
PP9	Organisations and Persons In Innovative Nuclear Systems	Н
DD10-	Assessment of Potential Benefits of Terrain, Topography and	11
PP10a	Geography to Adversaries	Н
PP10b	Assessment of Transportation and Off-Site Response Routes	Н
PP10c	Consideration of Future Development and Encroachment by	Н
11100	Public	11
PP11a	Consideration of PP to Design of Innovative Nuclear System	Н
	Components	
PP11b	Consideration of PP to Layout of Innovative Nuclear System	Н
	Components Integration of DDAD, and Response to Achieve Timely	
PP12a	Interruption	Н
PP12b	PPS Designed to Account for Insider Adversaries	Н
PP12c	Redundancy of PPS	H
PP13a	Assignment of Responsibilities for Executing Emergency Plans	Н
PP13b	Established Capabilities of PP to Prevent/Mitigate Radiological	Н
PP13D	Consequences of Sabotage	11
PP13c	Established Capabilities of PP to Recover Stolen Nuclear	Н
	Materials or Recapture Nuclear Facility	11

References

- 1. Stamford L, Azapagic A. Sustainability Indicators for the Assessment of Nuclear Power. Energy **36:10** (2011) 6037–57
- Wilson PPH. Comparing Nuclear Fuel Cycle Options: Observation and Challenges.
 (2011).
 http://brc.gov/sites/default/files/documents/wilson.fuel_.cycle_.comparisons_final.pdf

 f [accessed 18/02/2013]
- 3. U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum. *A Technical Roadmap for Generation IV Nuclear Energy Systems*. Report GIF–002–00. (2002) http://www.gen-4.org/PDFs/GenIVRoadmap.pdf [accessed 18/02/2013]
- 4. Forschungszentrum Jülich GmbH. *RED-IMPACT: Impact of Partitioning, Transmutation and Waste Reduction Technologies on Final Nuclear Waste Disposal, Synthesis Report.* (2007) ftp://ftp.cordis.europa.eu/pub/fp6-euratom/docs/red-impact-final-published-report_en.pdf [accessed 18/02/2013]
- 5. Organisation for Economic Co-operation and Development Nuclear Energy Agency *Trends in the Nuclear Fuel Cycle: Economic, Environmental and Social Aspects.* (2001) ISBN: 92–6–419664–1
- 6. Lamego F, Fernandez H, Franklin M. *Uranium Mining and Energy Environmental, Economical and Social Sustainability Indicators. Indicators for Sustainability in the Mineral Extraction Industries.* (2002) ISBN: 978–857–227164–6 pp. 153–66.
- 7. International Atomic Energy Agency. *Guidance for the Application of an Assessment Methodology for Innovative Nuclear Energy Systems; INPRO Manual* Volume 1: Overview of the Methodology. (2008) ISBN: 978–92–0–100509–0
- Hirschberg S, Bauer C, Burgherr P, Dones R, Simons A, Schenler W, et al. New Energy Externalities Developments for Sustainability (NEEDS): Deliverable n° D3.2

 RS 2b: Final Set of Sustainability Criteria and Indicators for Assessment of Electricity Supply Options (2008) http://www.needs-project.org/docs/RS2b%20D3.2%20-%20Criteria&Indicators.pdf [accessed 18/02/2013]