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Price determination in electricity markets

• Liberalisation creates wholesale markets

– day-ahead, balancing, over-the-counter, contract .. 

• generators submit offers (supply functions)

• agents submit bids for demand

• Market operator clears market at market 

clearing price

How to model the supply function equilibrium?
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Wholesale electricity markets

• Typically uniform price auctions
– Separate price determined for each period

– English Pool: offers day-ahead for 48 half-hours

• Generating costs are common knowledge

• Electricity is a homogeneous good

• Few producers => bid strategically

• Many consumers => price-takers

Modelling market power important
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Continuous SFE

• Green and Newbery adapt Klemperer and Meyer 

supply function model for electricity:

– uncertainty = time varying demand

– Nash Equil: Given varying demand and competitors’ SF, 

each producer i = 1,…N, chooses its SF Si(p) to maximise 

profit at each level of residual demand D(p,ε)-Σj Sj(p)

• SFE determined by system of DE’s:
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Objections to continuous SFE

• Power exchanges require stepped offers and 

bids (“price ladders”)

=> Residual demand stepped

=> poorly defined marginal revenue

=> multi-unit auctions

=> mixed strategies, unstable prices
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Example from the Amsterdam Power Exchange
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Related literature

• Dasgupta and Maskin (1986): Nash Equilibria 

(NE) of discrete approx of continuous game need 

not converge to NE of continuous game if payoff 

functions are discontinuous 

• Empirical studies of Texas balancing market

=> large producers bid to satisfy f.o.c.s of continuous SFE

• Wolak (04), Anderson-Xu (04) derive best step 

function responses given prior choice of prices 

– do not analyse convergence to continuous SFE
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Hortacsu-Puller model of ERCOT

• bids of all gencos available to regulator

• cost functions common knowledge => MCi

• demand less other firms’ bids = RDi(p)

• can compute slope RDi'(p)

• can compute p - MCi(Si(p)) 

• can compare this with actual bids

• can estimate (degree of market power) in

p - MCi(Si(p)) = {[Si(p) - QCi]/ RDi'(p)}

= 0: competitive; = 1: non-collusive optimum
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Continuous supply functions are 

convenient  => pure-strategy SFE

S

p

p

S

Summary

von der Fehr and Harbord (1993) argue for 

step offers that are discrete in quantity

=> unstable prices

=> do not converge to continuous SFE

We derive pure-strategy NE of game 

with step offers discrete in prices

=> stable prices

=> converge to continuous SFE.
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Multi-unit auctions 

(discrete quantitities)

• von der Fehr and Harbord (1993):

– multi-unit auction; continuum of prices: 

– goods are indivisible:                                        

=> pure-strategy equilibria may not exist

– infinitesimal undercutting profitable

– even if units are arbitrarily small 

=> mixed NE => unstable prices.
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Stepped supply function

discrete prices

• Our model

– finite set of prices: 

– goods are divisible:                          

• offers below MCP accepted, at the MCP in 

proportion to offers at the MCP              

=> pure-strategy equilibrium exists

• converges to continuous SFE as M

cannot marginally undercut rival
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Accepted supply of producer i

p
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Total deterministic 

net-supply in market
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Assumptions: Concave demand, fine enough price grid

• Consider equilibria, such that supply functions are 

bounded, increasing and have positive mark-ups for all 

realized prices.

Continuous SFE 

with assumed 

properties exist

Discrete NE with 

assumed properties 

exist

In the limit, as the price grid gets finer, discrete NE 

converges to continuous SFE

Convergence of discrete NE to conts. SFE



21

Outline of convergence proof

1. Solutions of difference eqns ( E) are consistent 

with f.o.c’s of continuous SF’s (CSF’s)

– if bounded and non-decreasing

2. Discrete solution exists and is stable

– based on LeVeque

3. As number of price steps M the solutions to 

the E’s converge to the CSFE

4. Non-decreasing solutions to E are NE

5. Increasing solutions to DE’s are NE
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Conclusions

• Convergence of stepped SFs to CSFE depends on 

nature of discreteness

• Price stability depends on market design: <= 

continuous payoff functions

– piecewise linear offers (Nord Pool)

– require large p, allow small q

• Conjecture: mixed strategy equilibria converge to 

CSFE as number of price steps increases, p falls

• Discrete solutions (which depend on pdfs) avoids 

need to smooth residual demand, and may 

improve empirical work (and solving CDEs)
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