

Supply Function Equilibria: Step Functions and Continuous Representations

Pär Holmberg, **David Newbery** and Daniel Ralph **OR 50**

9-11 September 2008, York

http://www.electricitypolicy.org.uk

Price determination in electricity markets

- Liberalisation creates wholesale markets
 - day-ahead, balancing, over-the-counter, contract ...
- generators submit offers (supply functions)
- agents submit bids for demand
- Market operator clears market at market clearing price

How to model the supply function equilibrium?

Wholesale electricity markets

- Typically uniform price auctions
 - Separate price determined for each period
 - English Pool: offers day-ahead for 48 half-hours
- Generating costs are common knowledge
- Electricity is a homogeneous good
- Few producers => bid strategically
- Many consumers => price-takers

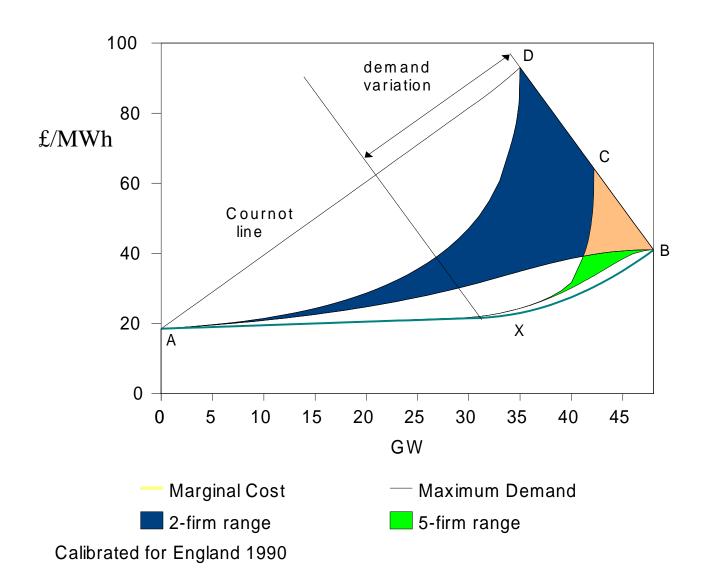
Modelling market power important

Continuous SFE

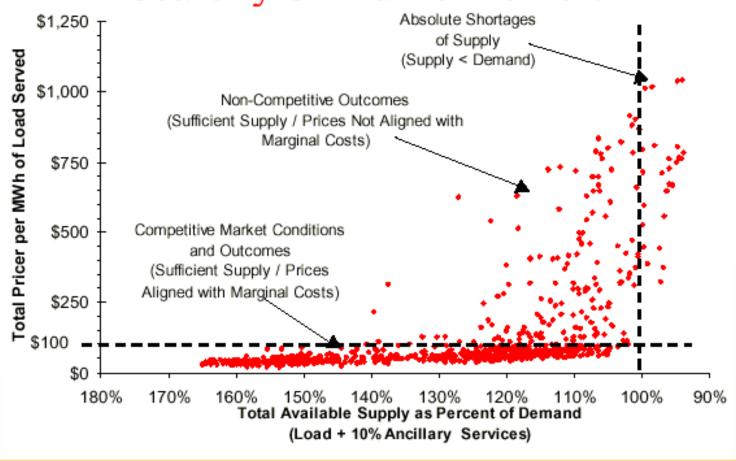
- Green and Newbery adapt Klemperer and Meyer supply function model for electricity:
 - uncertainty = time varying demand
 - Nash Equil: Given varying demand and competitors' SF, each producer i = 1,...N, chooses its SF $S_i(p)$ to maximise profit at each level of residual demand $D(p,\varepsilon)$ - $\Sigma_i S_i(p)$
- SFE determined by system of DE's:

$$\begin{cases}
S_{1} \boldsymbol{\phi} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ -\mathbf{a} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} \end{bmatrix} \mathbf{\phi} = \begin{bmatrix} \mathbf{b} & \mathbf{b} \\ -\mathbf{b} \end{bmatrix} \mathbf{\phi}$$

Feasible Supply Functions Duopoly and Quintopoly



Scarcity or Market Power?

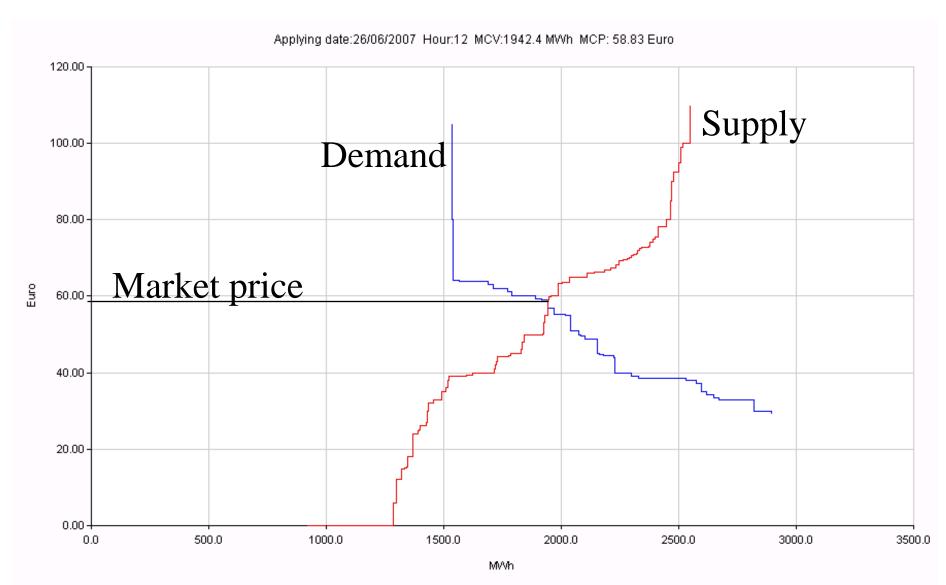


^{*} Source: Report on California Energy Market Issues and Performance: May-June, 2000, Prepared by the Department of Market Analysis, August 10, 2000

Objections to continuous SFE

- Power exchanges require stepped offers and bids ("price ladders")
- => Residual demand stepped
- => poorly defined marginal revenue
- => multi-unit auctions
- => mixed strategies, unstable prices

Example from the Amsterdam Power Exchange



Related literature

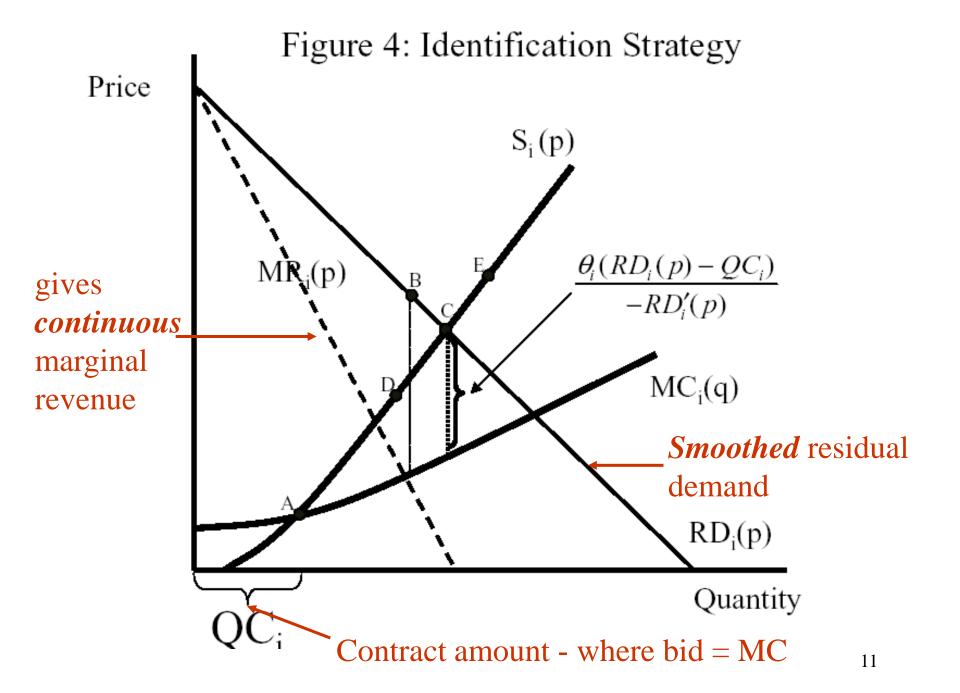
- Dasgupta and Maskin (1986): Nash Equilibria (NE) of discrete approx of continuous game need not converge to NE of continuous game *if payoff functions are discontinuous*
- Empirical studies of Texas balancing market
 - => large producers bid to satisfy f.o.c.s of continuous SFE
- Wolak (04), Anderson-Xu (04) derive best step function responses given prior choice of prices
 - do not analyse convergence to continuous SFE

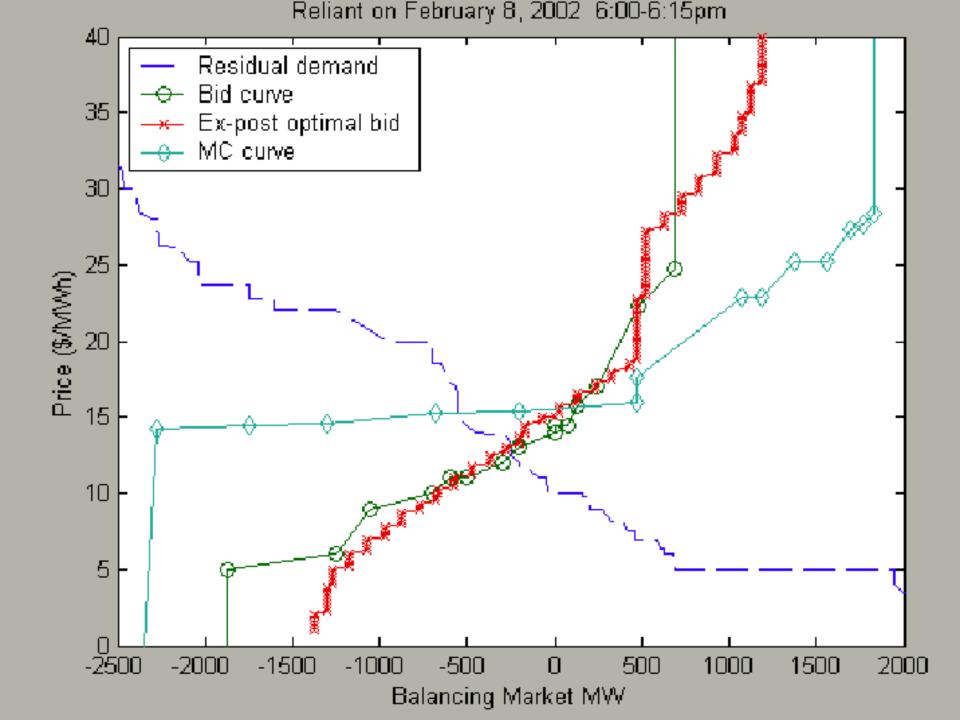
Hortacsu-Puller model of ERCOT

- bids of all gencos available to regulator
- cost functions common knowledge $=> MC_i$
- demand *less* other firms' bids = $RD_i(p)$
- can compute slope $RD_i'(p)$
- can compute p $MC_i(S_i(p))$
- can compare this with actual bids
- can estimate θ (degree of market power) in

$$p - MC_i(S_i(p)) = \theta\{[S_i(p) - QC_i]/RD_i'(p)\}$$

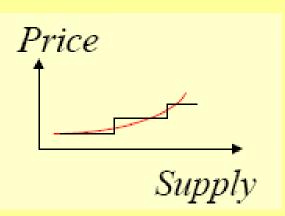
 $\theta = 0$: competitive; $\theta = 1$: non-collusive optimum





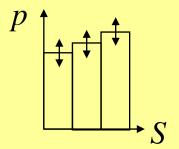
Summary

Continuous supply functions are convenient => pure-strategy SFE



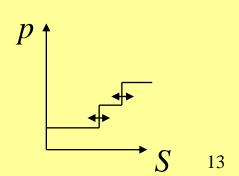
von der Fehr and Harbord (1993) argue for step offers that are **discrete in quantity**

- => unstable prices
- => do not converge to continuous SFE



We derive pure-strategy NE of game with step offers discrete in prices

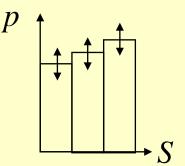
- => stable prices
- => converge to continuous SFE.



Offer constraints in wholesale electricity markets

Market	Installed capacity	Max steps	Price range	Price tick size	Quantity multiple	No. quantities/ No. prices
Nord Pool spot	90,000 <i>MW</i>	64 per bidder	0-5,000 <i>NOK/MWh</i>	0.1 NOK/MWh	0.1 <i>MWh</i>	18
ERCOT balancing	70,000 <i>MW</i>	40 per bidder	-\$1,000/MWh- \$1,000/MWh	\$0.01/MWh	0.01 MWh	35
PJM	160,000 MW	10 per plant	0-\$1,000/MWh	\$0.01/MWh	0.01 MWh	160
UK (NETA)	80,000 MW	5 per plant	-£9,999/MWh- £9,999/MWh	£0.01/MWh	0.001 MWh	4
Spain Intra- day market	46,000 MW	5 per plant	Yearly cap on revenues	€0.01/MWh	0.1 <i>MWh</i>	

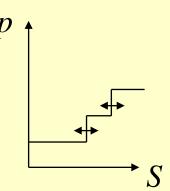
Multi-unit auctions (discrete quantitities)



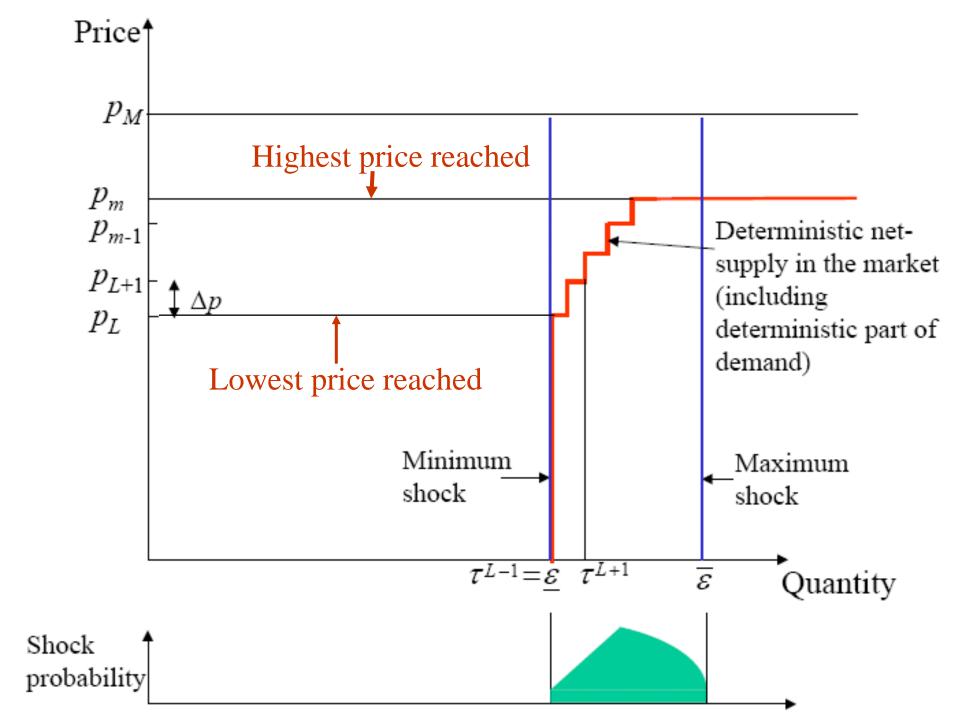
- von der Fehr and Harbord (1993):
 - multi-unit auction; continuum of prices: $p \in [p, \overline{p}]$.

 goods are indivisible: $s_i \not p \in [q_1, q_2, ..., \overline{q}]$.
- => pure-strategy equilibria may not exist
 - infinitesimal undercutting profitable
 - even if units are arbitrarily small
 - => mixed NE => unstable prices.

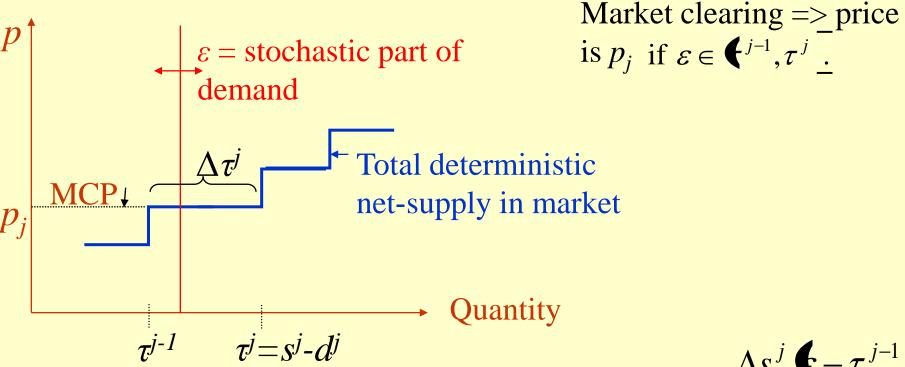
Stepped supply function discrete prices



- Our model
 - finite set of prices: $p \in \{1, p_2, ..., p_M\}$ - goods are divisible: $s_i \notin \{1, q_1, ..., p_M\}$
- offers below MCP accepted, at the MCP in proportion to offers at the MCP
- => pure-strategy equilibrium exists
- converges to continuous SFE as $M \rightarrow \infty$ cannot marginally undercut rival



The expected profit of firm i

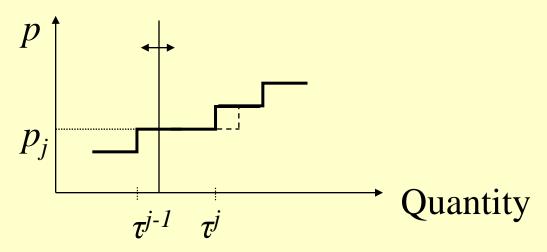


Accepted supply of producer
$$i$$
 if $\varepsilon \in \P^{j-1}$, $\tau^j = s_i = s_i^{j-1} + \frac{\Delta s_i^j - \tau^{j-1}}{\Delta \tau^j}$.

Expected profit of producer *i*:

$$E \bullet \underset{i=1}{\overset{m}{\int}} \int_{\tau^{j-1}}^{\tau^{j}} \left[p_{j} \left(s_{i}^{j-1} + \frac{\Delta s_{i}^{j} \bullet - \tau^{j-1}}{\Delta \tau^{j}} \right) - C_{i} \left(s_{i}^{j-1} + \frac{\Delta s_{i}^{j} \bullet - \tau^{j-1}}{\Delta \tau^{j}} \right) \right]_{18} \bullet \mathcal{E}$$

First-order condition: discrete prices



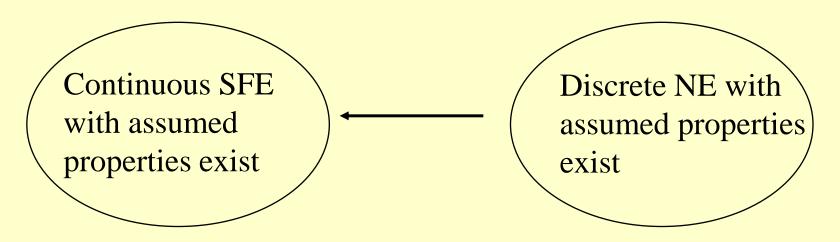
Neg. contribution from
$$\varepsilon = \tau^{j}$$

$$\frac{\partial E \bigoplus_{i} \bigoplus_{j=1}^{r^{j+1}} \sum_{\tau^{j-1}} \bigvee_{j} -C_{i}' \bigoplus_{i} \bigoplus_{j} \frac{\Delta \tau_{-i}^{j} \bigoplus_{i} -\tau^{j-1}}{\Delta \tau_{-i}^{j}} g \bigoplus_{j} \varepsilon d\varepsilon + \sum_{\tau^{j}} \bigvee_{j} -C_{i}' \bigoplus_{\tau^{j}} \sum_{\tau^{j+1}} \bigvee_{j} g \bigoplus_{\tau^{j+1}} g \bigoplus_{\tau^{j}} g \bigoplus$$

Convergence of discrete NE to conts. SFE

Assumptions: Concave demand, fine enough price grid

• Consider equilibria, such that supply functions are bounded, increasing and have positive mark-ups for all realized prices.

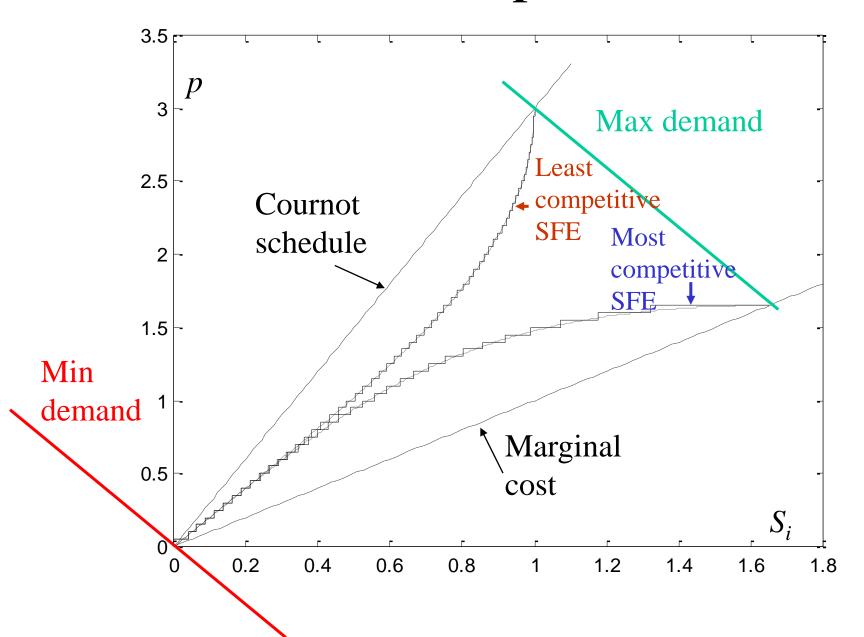


In the limit, as the price grid gets finer, discrete NE converges to continuous SFE

Outline of convergence proof

- 1. Solutions of difference eqns (ΔE) are consistent with f.o.c's of continuous SF's (CSF's)
 - if bounded and non-decreasing
- 2. Discrete solution exists and is stable
 - based on LeVeque
- 3. As number of price steps $M \to \infty$ the solutions to the ΔE 's converge to the CSFE
- 4. Non-decreasing solutions to ΔE are NE
- 5. Increasing solutions to DE's are NE

Example



Conclusions

- Convergence of stepped SFs to CSFE depends on nature of discreteness
- Price stability depends on market design: <=
 continuous payoff functions
 - piecewise linear offers (Nord Pool)
 - require large Δp , allow small Δq
- Conjecture: mixed strategy equilibria converge to CSFE as number of price steps increases, Δp falls
- Discrete solutions (which depend on pdfs) avoids need to smooth residual demand, and may improve empirical work (and solving CDEs)

Supply Function Equilibria: Step Functions and Continuous Representations

Pär Holmberg, **David Newbery** and Daniel Ralph **OR 50**

9-11 September 2008, York

http://www.electricitypolicy.org.uk