Business Models for Future Energy Systems

Michael Pollitt

Judge Business School
University of Cambridge

BIEE
Oxford
22 September 2016
Outline

- With thanks to my Cambridge colleagues:
 Dr Karim Anaya, Dr Thomas Greve, Francisco Ruz and Dr Laura Richter.

- EPSRC Autonomic Power System Project and EPSRC Business, Economics, Planning and Policy for Energy Storage in Low-Carbon Futures (BEPP-Store)

- Business Models

- Business Models and Electrical Energy Storage (B to B)

- Business Models and Residential Consumers (B to C)

- The Challenge to Existing Business Models
BUSINESS MODELS IN THE CONTEXT OF THE FUTURE ENERGY SYSTEM
Business Models
(see Teece, 2010)

Business models are about:

Value Proposition –
what services being sold and to whom?

Value Creation –
how will the service be created and provided?

Value Capture –
how will the value be monetised?

Business models are not just about pricing strategy…
Some co-existence of business models likely…
Business models must add up in terms of basic economics of risk-return payoff…

Often they don’t in smart (or even dumb) energy…
Business Models

![Business Model Definition - The Magic Triangle](image)

Source: Gassmann et al., 2014, p.2.
Business model types (out of 55) that might apply to energy services...

- Flat Rate
- Fractional Ownership
- Franchising
- Guaranteed availability
- Hidden Revenue
- Integrator
- Leverage customer data

- No frills
- Open business model
- Pay per use
- Performance based contracting
- Revenue sharing
- Subscription
- Two-sided market

Source: Gassmann et al. 2014
Business models and future energy

• Value proposition for future energy services are often based on intermittency of energy supply and inflexibility of energy demand.

• Value creation is around whether new technologies can facilitate supply and demand matching in power, transport and heat.

• Value capture is about how future energy investments will be able to earn a return.
Some basic facts of economic life that new business models must recognise

- The decline of resource rents (and demand?) in the energy sector will reduce the aggregate profitability of the energy sector.
- A shift to manufacturing as the basis of the energy sector will reduce rates of return and the significance of energy companies in stock markets and, likely, government policy.
- Energy customers are interested in price (as low as possible), predictable bills and energy security (no worse than now) and they don’t like complexity.
- Citizens (but not necessarily customers) are interested in environmental impacts to some extent.
- The world is not like California and Hawaii, e.g. in the UK electricity bills are lower ($60.39 vs $91.26 vs $187.59 per month, 2014) and renewables not as well matched to demand.
Some basic facts of economic life that new business models must recognise

• Average energy prices for households for heating and power will remain subject to economic regulation and oversight. Rates of return on energy companies will be effectively capped and the potential for high rates of return limited.

• The structure of energy prices will also continue to be subject to regulatory oversight and hence the scope for increased price discrimination will be limited. Certain types of price discrimination may not be allowed.

• Regulators will rightly be skeptical of new technological solutions which do not deliver proven customer benefits: because a technology is faster, cleaner or more secure it is NOT necessarily worth it.

• Regulators should also be skeptical of significant return of old business models which disappeared due to lack of scale economies (e.g. local grids).
Some basic facts of economic life that new business models must recognise

- **Stranding risks** are high in energy and new investments create liabilities for current and future customers.

- **Electricity sector** should be expected to lag on implementation of both communications and financial innovation, given risk-return profile attached to sector by customers. Customers don’t want existing energy system to be an expensive test-bed.

- BMs from new players (e.g. peer to peer) may be free-riding on default service provisions, option value of grid use and avoidance of fixed costs (e.g. triad avoidance benefits).

- Business models imported from other sectors into energy may be regarded as ‘wreckless’ if they impose extreme risks for shareholders and for the rest of the system.
BUSINESS MODELS AND ELECTRICAL ENERGY STORAGE
A value proposition for storage? Impact of flexibility on the generation mix GB 2030

Source: Strbac et al., 2016, p.18.
Economic challenge in energy storage

• Fossil fuel allows easy, flexible storage.
• No-one demands storage as a final consumption good.
• Production processes should minimise storage and aim for just in time delivery.
• High fixed up front costs.
• Stand alone storage businesses face higher costs.
• Market design and regulation important.
Some basic economics of energy storage

• High frequency of use storage is more profitable than seasonal storage, given high capital costs.
• Storage which relies on multiple sources of value faces higher transaction costs.
• More storage reduces the value of each additional unit of storage, meaning that if non-integrated storage is likely to be less than globally optimal.
• The value of storage will depend on what else is on the energy system in terms of storage, demand and generation.
• If storage is not about energy then residual fossil fuel systems will compete strongly with advanced forms of storage, in a so called sailing ship effect (see Geels, 2002).
Sources of Value Creation for generic battery storage

Source: EPRI (2013, 2-2).
Electricity product markets need to be redesigned...

<table>
<thead>
<tr>
<th>Service</th>
<th>The UK</th>
<th>Germany</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Procurement</td>
<td>Remuneration</td>
<td>Procurement</td>
</tr>
<tr>
<td>Primary Frequency Control</td>
<td>Tendering</td>
<td>Pay as bid</td>
<td>Tendering</td>
</tr>
<tr>
<td>Secondary Frequency Control</td>
<td>-</td>
<td>-</td>
<td>Tendering</td>
</tr>
<tr>
<td>Spinning Reserve</td>
<td>Tendering</td>
<td>Pay as bid</td>
<td>Tendering</td>
</tr>
<tr>
<td>Voltage Control</td>
<td>Compulsory and tendering</td>
<td>Pay as bid</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Enhanced Voltage Control</td>
<td>Tendering</td>
<td>Pay as bid</td>
<td>Bilateral Contracts</td>
</tr>
<tr>
<td>Black Start</td>
<td>Bilateral Contract</td>
<td>Pay as bid</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Table 1. Procurement and remuneration methods in the UK, Germany and Spain (Ministerio de Industria, 1998, 2009, 2014; Rebours et al, 2007; National Grid; regelleistung.net; Castro, 2013)

Source: Ruz and Pollitt (2016).

National Grid tendered for 200MW of a new service in April 2016 – Enhanced Frequency Response (EFR) – a product to provide frequency response within 1 second.
Regulatory barriers need to be addressed…

• These include definition of storage – is it generation or retail or something else?

• Regulated incumbent network companies may be able to include storage in their asset base, reducing the scope for non-regulated storage.

• Unbundling rules may mean that if network companies own storage they cannot dispatch it and must work through a third party.

• Existing network charging methodologies may over or under incentivise new investments (see Pollitt, 2016).
BUSINESS MODELS AND RESIDENTIAL CONSUMERS
The challenge of value proposition and value capture: lessons from 50 years of fixed line voice telecoms pricing

Source: Oseni and Pollitt, 2016.
We show, if anything time and distance price discrimination has declined since 1960. This suggests that increasing price differentiation in final prices is unlikely.
What is the WTP/WTA for smart home service contracts?

Discrete choice survey of 1800+ customers. Need to offer £26.28 (2.19*12) up front, and then give 50% of savings, so if company saves customer £100, then it gets £23.72 gross revenue.
THE CHALLENGE TO EXISTING BUSINESS MODELS
The death of the utility? Solar PV and distribution of network charge payments in South Queensland, Australia

<table>
<thead>
<tr>
<th>Household</th>
<th>No air-con</th>
<th>Air con</th>
<th>No air-con</th>
<th>Air-con</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Solar PV</td>
<td>No Solar PV</td>
<td>Solar PV</td>
<td>Solar PV</td>
</tr>
<tr>
<td>Maximum Demand (kW)</td>
<td>1.41</td>
<td>2.14</td>
<td>1.40</td>
<td>2.09</td>
</tr>
<tr>
<td>Metered import (kWh)</td>
<td>6253.4</td>
<td>7560.6</td>
<td>3820.1</td>
<td>4707.1</td>
</tr>
<tr>
<td>Solar Export (kWh)</td>
<td>0</td>
<td>0</td>
<td>2259.1</td>
<td>1838.8</td>
</tr>
<tr>
<td>Gross Demand (kWh)</td>
<td>6253.4</td>
<td>7560.6</td>
<td>6253.4</td>
<td>7560.6</td>
</tr>
<tr>
<td>Number of customers</td>
<td>283849</td>
<td>694643</td>
<td>26151</td>
<td>235357</td>
</tr>
<tr>
<td>% of customers</td>
<td>23%</td>
<td>56%</td>
<td>2%</td>
<td>19%</td>
</tr>
<tr>
<td>Base Network Tariff Differences</td>
<td>$1006.14</td>
<td>$1171.37</td>
<td>$698.57</td>
<td>$810.69</td>
</tr>
<tr>
<td>A-C</td>
<td>$307.57</td>
<td>B-D</td>
<td>$360.68</td>
<td></td>
</tr>
</tbody>
</table>

Note: Solar PV took off in 2009; charging basis 20% fixed, 80% per kWh import. Source: From Simshauser (2014), p.22, Table 3. Modeled impact for 2014. (See Pollitt, 2016).

Clearly there is a case for regulatory action to change charging basis.
In summary…

- The fundamental economics of the smart, low carbon, renewable energy future still looks challenging.
- Regulatory and market design changes will be necessary to support new business models in energy.
- Good business models should focus on creating value for customers, not satisfying ‘system’ requirements.
- Little historical precedent for type of dynamic pricing many assume is needed at the retail level.
- Household participation will be costly to induce.
- Traditional business models are under attack but there are signs of change.
However…

- Technological hubris, limits of picking winners, understanding the final customer and nature of scale economies remain important, for the energy economist, as we envisage what is an exciting energy future of possibilities.

- Comprehensive cost benefit analyses of market and regulatory design changes are necessary to avoid vague justifications in terms of environment, renewables, security, jobs, industrial strategy, international relations…
References

• ETI (2013), Smart Systems and Heat: A perspective from the United Kingdom. Energy Technologies Institute.

• Oseni, M.O. and Pollitt, M.G. (2016), The prospects for smart energy prices: observations from 50 years of residential pricing for fixed line telecoms and electricity, EPRG Working Paper No.1611.

