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Abstract 

Effective decision making to allocate public funds for energy technology research, development, and 
demonstration (R&D) requires considering alternative investment opportunities that can have large but 
highly uncertain returns and a multitude of positive or negative interactions. This paper proposes and 
implements a method to support R&D decisions that propagates uncertainty through an economic model 
to estimate the benefits of an R&D portfolio, accounting for innovation spillovers and technology 
substitution and complementarity. The proposed method improves on the existing literature by: (a) using 
estimates of the impact of R&D investments from one of the most comprehensive sets of expert 
elicitations on this topic to date; (b) using a detailed energy-economic model to estimate evaluation 
metrics relevant to an energy R&D portfolio: e.g., system benefits, technology diffusion, and uncertainty 
around outcomes; and (c) using a novel sampling and optimization strategy to calculate optimal R&D 
portfolios. This design is used to estimate an optimal energy R&D portfolio that maximizes the net 
economic benefits under an R&D budget constraint. Results parameterized based on expert elicitations 
conducted in 2009-2011 in the United States provide indicative results that show: (1) an expert-
recommended portfolio in 2030, relative to the BAU portfolio, can reduce carbon dioxide emissions by 46 
million tonnes, increase economic surplus by $29 billion, and increase renewable energy generation by 39 
TWh; (2) uncertainty around the estimates of R&D benefits is large and overall uncertainty increases with 
greater investment levels; (3) a 10-fold expansion from 2012 levels in the annual R&D budget for utility-
scale energy storage, bioenergy, advanced vehicles, fossil energy, nuclear energy, and solar photovoltaic 
technologies can be justified by returns to economic surplus; (4) the greatest returns to public R&D 
investment are in energy storage and solar photovoltaics; and (5) the current allocation of energy R&D 
funds is very different from optimal portfolios. Taken together, these results demonstrate the utility of 
applying new methods to improve the cost-effectiveness and environmental performance in a deliberative 
approach to energy R&D portfolio decision making. 
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Introduction 

The well-known environmental (IPCC, 2014), economic (IEA, 2011; WHO and UNDP, 2009), and 

security (Cherp et al., 2012) challenges in the energy sector have justified a wide array of energy policies, 

such as pollution regulations, targeted subsidies, and technology standards. In order to be dynamically 

cost-effective, these policies require complementary technology policies (Jaffe et al., 2005). One of the 

most important forms of technology policy is government funding for energy R&D to support innovation 

projects that would not otherwise attract sufficient private investment. Toward this end, the U.S. 

Department of Energy (DOE) has allocated approximately $5 billion per year since 2009 towards energy 

R&D and basic energy science (Gallagher and Anadón, 2013).  

Recently, under the heading of Mission Innovation, governments of 22 countries (and the European 

Union), representing more than 80% of global clean energy R&D funding, committed to doubling their 

R&D investments from 2015 – 2020. Allocating greatly expanded energy R&D budgets will require 

clarity about the goals of new R&D funds. Maximizing the probability of achieving such goals will in turn 

require a methodological approach to allocating funds across various clean energy technologies that 

systematically provides an analytic basis for assessing tradeoffs. The method presented in this paper offers 

one approach to supporting decisions to allocate public R&D funds across technology areas that 

complements existing frameworks such as comprehensive reviews of energy R&D activities (DOE, 2012), 

retrospective analysis (NRC, 2001), individual technology roadmaps (Geum and Park, 2013), and 

evaluations driven by the broader political landscape. 

The method proposed and implemented here has several desirable characteristics that differentiates it 

from existing approaches in the literature: (1) it quantifies the anticipated improvement in technology in a 

way that fully accounts for the inherent uncertainty in the returns to R&D; (2) it systematically captures 

the interactions between R&D investments that can occur through technology spillovers or through market 

interactions of technology substitutes and complements, an important limitation of existing approaches 

(NRC, 2007a); (3) it is flexible to changing assumptions that are fundamentally subjective, such as belief 

distributions of the elasticity of future technology costs to current R&D investments; and (4) it is 
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transparent, and therefore feasible to implement in public organizations that require transparency to build 

procedural legitimacy. 

1.1 Current Process at the U.S. Department of Energy 

DOE is the single largest energy R&D funding entity in the United States and the largest public 

energy R&D funding entity of all member countries in the International Energy Agency (which are largely 

the industrialized country members of the OECD and the countries with the most reliable data for this 

metric) (IEA, 2013). Nevertheless, several experts and expert panels have called for greater U.S. 

government spending in energy R&D (American Energy Innovation Council, 2010; APS, 2008; NCEP, 

2004; Nemet and Kammen, 2007; PCAST, 2010, 1997) and U.S. political leaders have committed to 

greatly increasing energy R&D funds (Bodnar and Turk, 2015). Although past studies calls for additional 

resources to be devoted to energy R&D, none offer rigorous quantitative estimates of the expected 

benefits of their recommendations. 

In current practice, despite the demonstrated interest of outside experts to affect DOE decision-

making, DOE’s decision making processes and tools do not systematically consider the benefits, and the 

uncertainty inherent in the benefits, of individual R&D programs or in aggregate (NRC, 2007b).  Current 

U.S. law requires that DOE submit annual estimates of its program’s benefits through the Government 

Performance and Results Act (GPRA). However, this program does not require DOE to consider 

uncertainty in its evaluation of R&D programs (NRC, 2007b), nor the interactions between the different 

technologies that the DOE’s programs support . For example, many of the technologies that DOE R&D 

programs support may induce technological spillovers among them or compete in markets as either 

complements (e.g., utility scale energy storage and renewable technologies like wind and solar power) or 

substitutes (e.g., more efficient internal combustion engine vehicles and electric vehicles). Capturing these 

market interactions is essential for estimating the benefits of improvements in technologies in a way that 

appropriately accounts for available “next-best” and “enabling” technologies (NRC, 2007a). Therefore, 

the benefits calculated under GPRA requirements are likely to be biased. Further, to improve the 

credibility and political buy-in to its decision-making process, DOE also faces the challenge of integrating 
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a wide array of non-transparent technical assumptions and models promoted by various stakeholders 

(NRC, 2007a; Silverman, 1981).  

1.2 Design Principles for an R&D Decision-Support Tool 

In this section four design principles for a decision-support tool that can feasibly and effectively 

improve public R&D portfolio design are proposed. While these principles are broadly applicable to R&D 

decision making in many contexts, they were developed based on a consideration of U.S. public energy 

R&D decision making and through iterative discussions with analysts involved in the DOE’s 

policymaking environment. These principles are used to evaluate how decisions are made in public energy 

R&D in the United Sates, while exploring some of the explanations for why policymakers in many public 

R&D funding agencies do not generally follow these design principles. The first two principles deal with 

analytical requirements and the second two principles concern institutional feasibility of implementing a 

decision support tool. Following a discussion of these principles, the remainder of the paper presents a 

method that follows the four proposed design principles and then examines the results of implementing it 

in the case of public U.S. energy R&D. 

Principle 1: Quantifiable. Technological improvement benefits of a decision must be prospectively 
quantified and account for uncertainty 

 
This paper differentiates “technological improvement benefits” of R&D, the change in cost and 

performance of technologies as a result of R&D, from “social benefits” of R&D, the changes in systemic 

policy objectives, such as aggregate economic surplus. Under Principle 1, technology improvement 

benefits are addressed; social benefits are addressed under Principle 2. The technology improvement 

benefits of R&D investments needed to support decision making should follow four sub-principles: (1) 

Relating technological improvement benefits to R&D investments requires specifying technological 

improvement benefits conditional on multiple levels of R&D investment; (2) The marginal rate of 

technological improvements at a given level of R&D depends not only on the level of R&D in that 

technology area but also on the level of R&D in related technology areas. In other words, R&D-induced 

improvements in different technologies can be correlated due to inter-technology spillovers. Therefore, to 
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avoid biased estimates of aggregate benefits, benefits of individual technology improvements must be 

jointly specified with an explicit dependence structure; (3) The returns to R&D are often only realized 

over long time horizons (several decades); therefore, to fully account for the benefits of R&D investments, 

benefit estimates must also consider both short-run and long-run technology improvement benefits; and 

(4) The returns to R&D should account for uncertainty. In addition to these four sub-principles, 

technological improvement benefit estimates should also be developed in a framework of common 

assumptions. For example, if estimates of the technology improvement benefits in one technology area are 

made for one timeframe, estimates for the benefits of other technologies should be made with the same 

timeframe. 

In U.S. energy R&D decision making, while benefits of R&D programs are estimated conditional on 

R&D levels—and are occasionally considered over different time horizons—current practice neither 

explicitly considers the dependence in improvements between technologies nor uses common assumptions 

to make the estimates across technology areas. Further, current practice does not consider the uncertainty 

in the benefits of R&D (NRC, 2007b), Despite robust evidence that uncertainty is a defining characteristic 

of R&D investment, it is neither legislative requirement (e.g. through GPRA) nor standard practice (e.g. in 

DOE budget justification documents) to quantify or otherwise assess the uncertainty in the benefits of 

R&D programs. 

Principle 2: Comprehensive. Social benefits of R&D investments must be evaluated in a common 
framework 

 
The second principle is based on the prerequisite that sound consideration of R&D tradeoffs requires a 

comprehensive framework for analyzing the social benefits of various R&D investments jointly and with 

common metrics. Therefore, while initial technology improvement benefit estimates need not necessarily 

be expressed in common units, a necessary condition to evaluate tradeoffs between R&D investments is 

that the ultimate metric for comparison—the social benefits—should be expressed in common units. 

To make well-informed R&D allocation decisions, a decision-support tool must consider how the 

benefits of improvements in individual technologies interact (as substitutes or complements). These 
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interactions may be positive, as is the case with the complementary role utility-scale energy storage can 

play in smoothing out the intermittent supply of electricity from renewable technologies like wind and 

solar power, or they may be negative, as is the case with substitute technologies like efficient internal 

combustion engines and electric vehicles that compete for the same market share.  Therefore, the benefits 

to society need to be estimated using a single framework that allows the aggregate benefits of a suite of 

R&D investments to be estimated.  

In terms of the second principle, current practice in U.S. energy R&D has significant room for 

improvement. DOE justifications to support funding requests are typically constructed project-by-project, 

program-by-program, or office-by-office, with little effort to standardize assumptions or reporting metrics. 

As a result, recent observers have characterized DOE decision making as “being badly ‘stovepiped,’ 

meaning that the various offices and programs poorly communicate with one another” (Cho, 2013), and 

needing  a strengthened “integrated policy assessment capability” for the “analysis capabilities housed in 

each major program area.” (Moniz, 2013) To improve the credibility and political buy-in to its decision-

making process, DOE also faces the challenge of integrating the wide array of technical assumptions and 

models it has access to (NRC, 2007b; Silverman, 1981). DOE’s budget justification documents contain 

very little information to help policymakers assess the relative merits of R&D programs, leaving decisions 

to be informed instead based on disparate one-dimensional estimates of benefits that do not take into 

account the outcomes of simultaneously-occurring decisions. 

Principle 3: Adaptive. Benefit analysis should be flexible to changing assumptions 
 
The third principle results from the need for a decision support tool to be relevant as technological 

characteristics improve over time and exogenous policy decisions are made (such as setting aggregate 

R&D budget levels or enacting policies that complement R&D). An R&D support tool should be made 

flexible to changing assumptions, allowing decision makers to update assumptions with the latest 

available information without reinventing the framework for analysis.  

Flexibility to changing assumptions also has the added advantage of allowing decision makers to 

conduct sensitivity analysis, directly testing the effect of different assumptions. In the context of many 
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R&D policy-making organizations, managers of individual technology programs may hold different 

subjective beliefs about the benefits of an R&D program. The ability to adjust to different sets of 

assumptions can help focus internal deliberations on specific quantitative assessments, or the choice of 

model and metrics to estimate social benefits, rather than abstract debates about biases of individual 

managers. Experience has shown that by agreeing on a flexible methodology prior to the introduction of 

technical assumptions, parties can build credibility (Parson, 1998).  

Principle 4: Transparent. Transparency in developing assumptions and analytical methods should be 
feasible 

 
The fourth principle is motivated by the institutional feasibility constraint that most R&D decision 

making organizations face to build procedural legitimacy both internal and external to the organization. 

One of the most important factors in developing procedural legitimacy in this context involves managing 

the transparency of inputs and methods used to support decision making. Within an organization, 

transparency can help build credibility of estimates from managers competing for the same pool of funds 

who might otherwise doubt the reliability of estimates from others. Transparency in how assumptions are 

developed and used can also help build external (public) credibility, and therefore, political support. 

However, public transparency can preclude the incorporation of proprietary information, which can lower 

the quality of technical estimates. Therefore, a process to support R&D decision making must be feasibly 

transparent but not necessarily actually both publically and privately transparent.  

Current U.S. energy R&D decision making practice does not make its assumptions and process 

transparent, making it infeasible to determine if current benefit estimates are flexible to changing 

assumptions or amenable to sensitivity analysis.  In current practice, the technology assumptions used to 

estimate the social benefits of individual technology programs often come from anonymous scientists or 

other experts within the DOE program offices, raising questions about the independence of these benefit 

estimates.  So long as program managers benefit from additional funding, they may suffer from 

motivational bias and are incentivized to overestimate the effectiveness of their programs to increase the 

funding they receive.  This had led to an erosion of trust among technical experts internal to R&D 
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programs who hold detailed knowledge about the R&D portfolio and between these experts and their 

funders in Congress. 

The four design principles and their components are summarized in Table 1.1.  

Table 1.1: Summary of Four Design Principles for an R&D Decision Making Process 
 

Principle Components of Principle 
1. Quantifiable: Technology 
improvement benefits 
prospectively quantified with a 
full account of uncertainty 

• Technology benefits estimated conditional on R&D levels 
• Dependence between technological improvements modeled 
• Benefits over different time horizons considered 
• Uncertainty in technology benefits of R&D modeled explicitly and 

estimated under common conditions 
2. Comprehensive: Social 
benefits evaluated in a common 
framework 

• At least one social benefit evaluated with common units 
• Dependence between R&D benefits modeled 
• Accommodation for details of how technology improvement 

benefits were estimated 
3. Adaptive: Flexible to 
changing assumptions 

• Flexible to update for technological change 
• Flexible to update for policy changes 
• Capable of sensitivity analysis 

4. Transparent: Feasible 
transparency  

• Transparency of assumptions 
• Transparency of methods 

 

1.3 Proposed Methods in the Literature 

Several studies in the literature on U.S. public energy R&D have proposed approaches to estimating 

the value of supporting energy technology R&D using a variety of analytical methods.  Schock et al. 

(1999) and Nemet and Kammen (2007) estimate the appropriate level of energy R&D as the difference 

between the cost of meeting CO2 emissions targets using assumptions of a business-as-usual (BAU) and 

an advanced technology scenario of costs. Davis and Owens (2003) use the concept of real options to 

estimate the value of investments in renewable energy R&D. Blanford (2009) estimates the optimal 

allocation of R&D funds for renewable energy, nuclear energy, and coal with CCS by defining two states 

for the cost of those technologies (BAU and low) and assuming that the probability of achieving the low-

cost technology is an exponential function of R&D. All of these approaches, however, are based on 

assumptions that are not grounded in empirical data about the degree of technological innovation that will 

result from increased R&D investment.  Other studies have used expert elicitations to determine the 

relationship between technology-specific public R&D and technology cost and performance in the United 
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States and the European Union (Anadón et al., 2012; Baker et al., 2009a, 2009b; Baker and Keisler, 2011; 

Bosetti et al., 2012; Chan et al., 2011), but have not made the additional step of quantifying aggregate 

benefits of a portfolio of R&D investments. The National Research Council (2007a) proposed a method to 

evaluate individual DOE R&D programs using expert-assessed probabilities incorporated in a decision-

tree framework to capture key uncertainties coupled with models to quantify benefits. However, this 

report does not propose a method to assess the aggregate benefits of an R&D portfolio in which the 

benefits of individual programs are contingent on each other. Nevertheless, the insights on assessing 

individual R&D programs were important for shaping this proposed approach to quantifying the benefits 

to energy R&D. 

1.4 The Challenges of R&D Benefit Estimation 

The uncertainties in the returns to R&D make estimation of the benefit of a single R&D program, let 

alone an entire R&D portfolio, challenging. Benefit calculation requires significant technological 

assumptions including an explicit representation of uncertainty. Uncertainty in the returns to R&D are 

well-documented, with a particular strain in the literature emphasizing the skewed distribution in the 

returns to R&D investment (Pakes, 1986; Scherer and Harhoff, 2000). It is also well-known that 

uncertainty in the returns to R&D is a feature of the R&D resource allocation problem that makes it 

distinct from other investment problems (Arrow, 1962). This uncertainty can be due to: complementary 

and substitute technologies leading to inter-technology dependent or “recombinant” uncertainties 

(Fleming, 2001), the public goods nature of the information outcomes of R&D leading to spillovers 

between R&D investments by different (public/private) actors (David et al., 2000; Griliches, 1992; Keefer, 

1991), and contingencies on many other factors (e.g., unpredictable demand, changing macroeconomic 

conditions, dependencies on markets in other countries, changing patterns of scientific/technical human 

capital etc.). Accounting for uncertainty in the returns to R&D is important for benefit estimation because 

greater uncertainty may either increase or decrease the value of conducting R&D (Bloom and Van 

Reenen, 2002; Santiago and Vakili, 2005). There is a considerable literature estimating the ex-post returns 

to R&D (see Hall et al. (2010) for a survey), with a particular strand grappling with the question of 
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attributing technological change to specific R&D projects (Hall, 1996). However, there is a more limited 

literature on methods to quantify the ex-ante returns to R&D, which are precisely the quantity necessary to 

assess in designing an R&D portfolio. 

Different methods in the literature can be classified in how they utilize information to quantify 

uncertainty ex-ante: (1) historic data (McNerney et al., 2011; Nemet, 2006; Wiesenthal et al., 2012); (2) 

data on early stage “precursor” technologies (Martino, 1987; Roper et al., 2011); and (3) data from 

technology experts. Methods that utilize data from technology experts have distinct advantages as an 

information source that feeds into a decision making process concerning R&D investments. Data from 

technology experts allows for the possibility that technologies may advance through new pathways that 

endogenously depend on current decisions or in ways supported by only the most recent information. 

Further, technology experts can incorporate useful information that is unpublishable or proprietary.  

Approaches to quantifying uncertainty typically represent probability distributions stylistically. 

Methods that utilize any of the three sources of information described can estimate notions of uncertainty 

parametrically (e.g. first and second moments) or non-parametrically (e.g. selected percentiles). Therefore, 

uncertainty analysis that requires propagating the uncertainty of estimated input parameters through a 

model typically depends on additional assumptions and appropriate sampling techniques. This is a 

particular challenge when there are multiple uncertain and non-independent parameters (such as the 

impact of R&D in various energy technologies that interact in the market), requiring an explicit 

representation of co-variation in parameters.  

2. Methods 

Inspired by an examination of the strengths and weaknesses of current practice in allocating U.S. 

public energy R&D investments, this paper proposes a methodology to generate inputs to an R&D 

decision making process that satisfies the four proposed principles. This method has six components, 

detailed below and in Figure 2.5 (which uses public R&D investment in just two technology areas as an 

example).  
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This paper develops and applies a method to support public energy R&D investments in the context of 

decision making at DOE.  The first stage of this method is a major expert elicitation exercise that collected 

inputs from 100 experts in a range of sectors about the probabilistic distribution of the future cost and 

performance of 25 energy technologies conditional on different DOE R&D investment levels and 

allocations. Conditional probability distributions then parameterize the MARket ALlocation (MARKAL) 

model, a bottom-up energy system model of the U.S. economy with internal buy-in at DOE (as 

demonstrated by its use by the DOE Office of Policy and International Affairs in the past). The 

conditional probability distributions are introduced into MARKAL with a targeted sampling strategy to 

approximate joint distributions, allowing us to run Monte Carlo simulations to approximate the 

distribution of several outcome variables of interest, such as economic surplus, pollution emission levels, 

and crude oil imports. The final step of the methodology uses an importance sampling and optimization 

approach to estimate optimal R&D portfolios for varying aggregate budgets.  

2.1 Expert Elicitation 

Recent research has shown that technical experts are able to consider and quantify the outcomes of 

R&D programs (Ruegg and Feller, 2003) and even parameterize probability distributions of outcomes 

(Chan et al., 2011; Catenacci et al., 2013; Bosetti et al., 2012; Fiorese et al., 2013; NRC, 2007a; Baker and 

Keisler, 2011; Baker et al., 2009b, 2009a; Curtright et al., 2008a; Abdulla et al., 2013; Jenni et al., 2013; 

Baker et al., 2010). Following the first design principle, the method proposed in this paper uses expert 

elicitation to parameterize probability distributions of technological improvement returns conditional on 

several R&D levels. Data from technology experts is collected through an expert elicitation of over 100 

experts in six technology areas (fossil energy, vehicles, energy storage, biofuels, solar energy, and nuclear 

energy)2, covering 25 technologies3. R&D funding in these six technology areas totaled approximately 

                                                             
2 These elicitations were conducted as part of a broader study on the political economy of energy R&D investments in the United 
States. The full results of this study are published in Anadón et al. (2011) and Anadón et al. (2014a). A 7th elicitation on building 
technology was also conducted but not utilized in this paper due to implementation complexities in MARKAL. 

3 Vehicles technology included fuel cell vehicles, battery-electric vehicles, plug-in hybrid vehicles, hybrid vehicles, and advance 
internal combustion vehicles. Solar photovoltaics (PV) included utility PV, residential PV, and commercial PV. Biofuels included 
bioenergy for electricity, and biochemical and thermochemical biofuels for jet fuel, diesel, and gasoline (thermochemical biofuels 
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$2.1 billion in 2009 and $1.8 billion in 2012, equivalent to over half of total DOE-funded applied R&D 

investment4. Estimates were collected using six distinct written and online surveys administered between 

2009 – 2011. Experts were selected for this study based on their contribution to the peer-reviewed 

literature, conference participation, and employment at research laboratories and universities. See 

Appendix A.1 for a more detailed description of the elicitation protocol and Anadón et al. (2014b) for 

even further detail, including the names of participants and the raw results of the elicitations.  

Expert elicitation is a structured and systematic process for collecting and assessing subjective 

probabilistic estimates from individuals with particular expertise of interest (Anadón et al., 2012; Baker et 

al., 2009a; Chan et al., 2011; Cooke, 1991; Curtright et al., 2008b; Morgan, 2014; Morgan and Keith, 

1995). This method involves in-depth engagement with experts to extract their subjective beliefs about 

uncertain parameters. This differs from surveys in that individual responses are not treated as observations 

from a single population, but rather as representative of a large body of knowledge. Therefore, expert 

elicitation seeks to include a group of participating experts of the highest quality and diversity of 

expertise, not the greatest quantity of viewpoints (Cooke, 1991). To avoid unwanted interactions between 

experts that would obscure the true diversity of judgments (Oppenheimer et al., 2007), experts were 

elicited individually rather than in a group setting, as in the related Delphi process or expert consensus 

methods (Dalkey, 1969).  

As in other technology forecasting expert elicitations, each elicitation instrument utilized in this study 

began with a technology primer based on a broad survey of the engineering literature in the technology 

                                                                                                                                                                                                     
for jet fuel was excluded). Energy storage included grid-scale lithium ion batteries, sodium-sulfur batteries, flow batteries, 
flywheels, and compressed air energy storage. Nuclear technology included modular nuclear reactors, Generation IV reactors, and 
Generation III/III+ reactors. Fossil energy included natural gas power plants with and without carbon capture and coal power 
plants with and without carbon capture. 

4 In FY 2009, DOE’s R&D portfolio in the six technology areas considered allocated $214 million to bioenergy, $440 million to 
vehicles (including hydrogen technology), $172 million to solar PV, $701 million to coal and gas fossil energy, $514 million to 
nuclear energy, and $83 million to energy storage. These totals exclude program direction and management and represent 59% of 
the total DOE energy technology R&D budget. The remaining $1.5 billion (41%) of the energy R&D budget not covered by the 
elicitations was comprised primarily of program direction and management ($425 million across all technology R&D areas), 
nuclear fusion ($395 million), other renewable energy R&D ($323 million across wind, geothermal, hydropower, Indian 
renewables, renewable energy facilities, and Congressionally directed projects), and other energy efficiency areas ($153 million 
across industry, distributed energy resources, and congressionally directed projects). In addition to these funding streams, DOE 
funding for basic energy sciences was $1.5 billion in 2009 and 2012 and DOE funding for environmental and biological R&D was 
$0.6 billion in 2009 and 2012. (Gallagher and Anadón, 2016) 
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area (Curtright et al., 2008a). These primers covered current technology cost and performance, fuel costs – 

if applicable, a summary of previous studies about future costs, and a summary of current U.S. federal 

government R&D investments in the particular technology area (primarily, but not exclusively, these 

investments were managed by DOE). Experts were then presented with an overview of heuristics to 

reduce their bias and overconfidence and asked to provide a detailed self-assessment of their expertise. 

After this background material, experts were asked to provide their estimates of 2010 technology 

costs. Next, they were asked to recommend a level of R&D funding for the technology area that the study 

considered and propose a specific allocation of these funds to specific technologies and research pathways 

within the technology area. These recommendations were made without a consideration of the tradeoffs 

between technologies and without a presupposed policy goal (although experts were asked to describe 

their strategy for allocating funds to specific technology areas and along different technology development 

stages). Figure 2.1 displays the results of the R&D funding recommendation portion of the expert 

elicitations. Recommendations for R&D funding in the six technologies consisted of R&D in several sub-

technologies and across different stages of development; for these specific results see Anadón et al., 

(2014b). From a methodological perspective, these results can be compared to the results from expert 

panels discussed above (American Energy Innovation Council, 2010; APS, 2008; NCEP, 2004; PCAST, 

2010, 1997). In every technology area, the majority of experts in this study recommended funding levels 

greater than current allocations. 
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The box plots are the expert-recommended funding levels (with empty grey circles denoting individual recommendations). The 
blue circles are the recommendations of the chosen “representative expert.” The representative experts in each technology area 
were selected not on the centrality of their RD&D budget recommendation, but instead on the centrality of their cost estimates 
(see Section 2.2 for detail). These representative expert recommendations form the basis of much of the subsequent analysis (see 
footnote 7 for the budget recommendation of the “representative expert”). The red and orange markers are the FY 2009 and FY 
2012 DOE budget allocations to particular R&D areas, respectively.  
 

Figure 2.1: Comparison of Expert-Recommended R&D Levels 
 

In the next step of the elicitations, experts provided estimates of their subjective belief distribution for 

specific technology costs in 2030 under four R&D funding scenarios (business as usual and three 

hypothetical R&D scenarios based on multiples of their recommendations). The elicitation results are 

constrained by the way in which technical experts are able to consistently understand and interpret 

probabilistic statements. Specifically, experts estimated their belief distributions by reporting the 10th, 50th, 

and 90th percentiles of the distribution of 2030 technology costs. Belief distributions were not elicited this 

way because percentiles can be expressed in the natural units of technology costs, which are more familiar 

to technology experts (unlike the inverse problem of estimating the cumulative probability of a given 

Rep. Expert 
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technology cost). Further, the inverse problem requires pre-specifying technology cost levels which could 

induce bias through anchoring or could be far from experts' beliefs and therefore not informative. Three 

percentiles were elicited to limit the number of parameters experts had to grapple with while still 

providing enough information to recover an estimated continuous distribution. This was a conscious 

decision in light of the limited patience and attention of participating experts and the tradeoff between 

more precisely estimating a smaller number of belief distributions or more imprecisely estimating a larger 

number of distributions. The elicitations concluded with a suite of qualitative questions to better 

understand each expert’s R&D strategy. 

2.2 Formalizing Elicitation Results 

This subsection uses the following notation to describe the steps of how the expert elicitation outputs 

were translated into inputs for the MARKAL model: 𝑡𝑡 indicates specific technologies which are grouped 

into technology clusters, 𝑐𝑐(𝑡𝑡); 𝑝𝑝 indicates the specific percentiles, 𝛼𝛼𝑝𝑝, used in the expert elicitation; 𝑟𝑟 

indicates the R&D budget multipliers, 𝛾𝛾𝑟𝑟, used in the expert elicitation; 𝑅𝑅𝑐𝑐(𝑡𝑡) is the expert-recommended 

R&D levels for the 𝑐𝑐(𝑡𝑡) technology cluster; 𝑅𝑅𝑅𝑅 are specific R&D funding levels; 𝑥𝑥𝑡𝑡,𝑝𝑝,𝑟𝑟 is the cost of a 

technology 𝑡𝑡 at the 𝑝𝑝 percentile under the 𝑟𝑟 R&D level. The 𝑐𝑐(𝑡𝑡) technology clusters group the 25 

technologies into 6 R&D clusters based on how aggregate R&D investments are allocated to the specific 

technologies. For example, R&D investments in solar photovoltaic technologies are allocated to utility 

photovoltaics, residential photovoltaics, and commercial photovoltaics. 

The outputs of the expert elicitations were: R&D budget recommendations for each technology-cluster 

(𝑅𝑅𝑐𝑐), technology cost estimates at three points on the inverse cumulative distribution (the 10th, 50th, and 

90th percentiles) in 2010 and in 2030 at each of three multiples (0.5, 1, and 10) of recommended R&D 

levels. In 2030, the cost parameters, 𝑥𝑥𝑡𝑡,𝑝𝑝,𝑟𝑟 for each of the 𝑡𝑡 = 1, …𝑇𝑇 (𝑇𝑇 = 25) technologies were estimated 

by experts at three points on the inverse cumulative distribution function of cost: 

𝑥𝑥𝑡𝑡,𝑝𝑝,𝑟𝑟 = 𝑄𝑄𝑡𝑡(𝛼𝛼𝑝𝑝;𝑅𝑅𝑅𝑅𝑐𝑐(𝑡𝑡) = 𝛾𝛾𝑟𝑟𝑅𝑅𝑐𝑐(𝑡𝑡)) (2.1) 
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In the above expression, 𝑐𝑐(𝑡𝑡) is the R&D cluster of technology 𝑡𝑡, 𝑅𝑅𝑅𝑅𝑐𝑐(𝑡𝑡) is the R&D level in the 𝑐𝑐(𝑡𝑡) 

cluster, 𝑅𝑅𝑐𝑐(𝑡𝑡) is the expert's recommendation for 𝑅𝑅𝑅𝑅𝑐𝑐(𝑡𝑡), 𝑝𝑝 = 1,2,3 index three percentiles (𝛼𝛼1 = 0.1,𝛼𝛼2 =

0.5,𝛼𝛼3 = 0.9), and 𝑟𝑟 = 1,2,3 index three R&D multipliers (𝛾𝛾1 = 0.5,𝛾𝛾2 = 1, 𝛾𝛾3 = 10). 2010 costs were 

elicited as in Equation (2.1) and do not depend on R&D levels. With estimates for 2030 technology costs 

for twenty five technologies at three percentiles and three R&D levels, and estimates for 2010 technology 

costs at three percentiles, this amounts to a minimum of 300 total parameter estimates from the expert 

elicitation exercise. 

An explicitly modeled dependence structure between these conditional distributions is represented as 

the 𝑽𝑽𝑇𝑇 Spearman correlation matrix of 2030 costs, capturing co-variation in technology improvement 

benefits that could be due to technological spillovers (e.g. from grid-scale batteries for energy storage to 

batteries used in electric vehicles). Spearman correlation, rather than Pearson correlation, is appealing for 

expert elicitation because it is cognitively more natural to think of relationships between uncertain 

quantities in terms of their strength of monotonicity rather than their strength of linearity. For many 

technology-technology diodes, a correlation in the 𝑽𝑽𝑇𝑇 matrix was not elicited and instead it was assumed 

that technology costs would be independent. 

Similarly, 𝑇𝑇 estimates of 𝜌𝜌𝑡𝑡, are estimated time rank correlations for each technology.  The 𝜌𝜌𝑡𝑡 time 

correlations take into consideration how much information relative 2010 technology costs provide for 

relative 2030 technology costs. These longitudinal (rank) correlations will be high for most technologies 

(0.7 ≤ 𝜌𝜌 ≤ 0.9), as experts assumed that it is unlikely that a technology on the high end of costs in 2010 

will be on the low end of costs in 2030. 

In the vehicle technologies elicitation instrument, experts were asked to provide information that 

could be used to empirically estimate joint probability distributions of costs that were related to batteries. 

After asking experts to provide their 10th, 50th, and 90th percentile cost estimates in 2030 under the various 

R&D scenarios, experts were asked to assume as fixed a given cost of a technology in 2030 and then re-

estimate the distribution of costs for a different technology in 2030. Through this conditional re-
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estimation, experts provided information that could be used to estimate a correlation between the future 

costs of the two technologies. However, these suites of questions were not implemented in all surveys 

because these were mentally taxing questions on an already fatiguing exercise. Therefore, a Delphi 

process within the research group was used, which had significant technology expertise, to propose a 

correlation matrix of 2030 technology costs for all twenty-five technologies. For many technology-

technology diodes, it was assumed that technology costs would be independent (See the Appendix A.2 for 

the correlation matrix used in this work). 

The elicitations utilized included subjective belief distribution estimates from over 100 experts. The 

full results of these elicitations are available online5 and are summarized in Anadon et al. (2014b). 

However, the objective of this paper is not to summarize the implications of these elicitations, but rather to 

demonstrate the utility of a methodology that connects the results of expert elicitations in general with an 

optimization and decision framework. With the emphasis on methods, we elect to simplify the use of 

elicitations by selecting a single representative expert for each of the six elicitations. Other approaches to 

simplifying the use of elicitations include averaging expert assessments, other methods of combining 

elicitation results based on expert confidence or expertise, and exploring sensitivity to expert assessment 

that is either more optimistic or pessimistic. These alternative methods are discussed in the context of 

inter-expert reliability (Anadón et al., 2013; Keith, 1996) and the factors that affect expert confidence 

(Nemet et al., 2016).  

We selected the “representative expert” for each of the 6 technology areas by evaluating which expert 

in each area had central estimate, 𝑥𝑥𝑡𝑡,2 , and uncertainty range indicator, �𝑥𝑥𝑡𝑡,3 − 𝑥𝑥𝑡𝑡,1� 𝑥𝑥𝑡𝑡,2�  , estimates of 

future technology costs that that fell at or near the average values of central and uncertainty range 

estimates of all experts in their area. Selection of representative experts was made without considering the 

expert’s R&D funding recommendation (see Figure 2.1). This selection was also vetted with 23 “higher 

                                                             
5 The full results from the elicitations upon which this study are based are available at: 
http://belfercenter.ksg.harvard.edu/publication/21528/transforming_us_energy_innovation.html  

http://belfercenter.ksg.harvard.edu/publication/21528/transforming_us_energy_innovation.html
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level” qualitative reviewers with experience in the management of large scale technology programs 

(Anadón et al., 2014b). 

2.3 Sampling Strategy 

Using the expert elicitation results from the selected representative experts, estimates of the benefits 

of an R&D portfolio are generated by introducing these estimates in the MARKAL model, a publicly-

available energy-economic model (see Section 2.4 for detail of the model). A key challenge is to translate 

the expert elicitation results into congruent probability distributions that could efficiently estimate 

outcome distributions given the computational cost of MARKAL. Because MARKAL is so 

computationally expensive due to the level of technical detail it incorporates, this sampling strategy is 

constrained to a finite number of model simulations (1,200 scenarios in the final implementation used in 

optimization). To overcome the limits of this constraint, samples from the distributions of technology 

costs were drawn using Latin Hypercube sampling (LHS) (McKay et al., 1979) and in a way to cover the 

full range of possible R&D realizations. LHS reduces the total variance in the sampled values of uncertain 

quantities by fixing the probability mass between all sampled values but does not introduce bias. The 

variance reduction property of LHS allows us to decrease the total number of samples (and therefore total 

number of model simulations) that are needed to run in order to sufficiently describe the variance in the 

output quantities of interest. However, the tradeoff in using LHS is that the samples drawn from the 

process are no longer independent and therefore, each sample viewed by itself is difficult to interpret. 

A shifted-log-logistic (SLL) functional form is imposed to interpolate and extrapolate the expert 

elicited percentiles as full probability distributions. The SLL distribution has three parameters, allowing us 

to exactly identify a continuous probability distribution that maximizes the information content of the 

elicitation results. Equation (2.2) shows the quantile function parameterization of the SLL distribution 

conditional on 𝒙𝒙𝒕𝒕 in terms of the three values of 𝑥𝑥𝑡𝑡,𝑝𝑝;𝑅𝑅𝑅𝑅𝑐𝑐(𝑡𝑡) at a given level of R&D, allowing us to 

sample values of 𝑝𝑝. A graphical depiction of the SLL fitting is shown in Figure 2.2 for percentiles 

estimated by experts at three R&D levels. 
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𝑄𝑄𝑡𝑡(𝑝𝑝|𝒙𝒙𝒕𝒕;𝑅𝑅𝑅𝑅𝑐𝑐(𝑡𝑡)) =
(𝑥𝑥𝑡𝑡,3 − 𝑥𝑥𝑡𝑡,2)(𝑥𝑥𝑡𝑡,1 − 𝑥𝑥𝑡𝑡,2)

2𝑥𝑥𝑡𝑡,2 − 𝑥𝑥𝑡𝑡,3 − 𝑥𝑥𝑡𝑡,1
��

1− 𝑝𝑝
𝑝𝑝

�
log�1 + 

2𝑥𝑥𝑡𝑡,2−𝑥𝑥𝑡𝑡,3−𝑥𝑥𝑡𝑡,1
log (9)(𝑥𝑥𝑡𝑡,3−𝑥𝑥𝑡𝑡,2)�

− 1� + 𝑥𝑥𝑡𝑡,2 (2.2) 

 

 
A graphical depiction of representative sets of expert-elicited percentiles for three R&D scenarios (shown separately in red, 
green, and blue white-filled circles) and conditional probability distribution fitting with the SLL distribution (on the left side of 
the y-axis).  
 

Figure 2.2: Distribution-Fitting to Expert-Elicited Percentiles 
 

While there are many probability distributions with three parameters, the SLL distribution is relevant 

for this application because it is a smooth distribution that can allow for skewness. A disadvantage of the 

SLL distribution is that it is almost always bounded on one side and the bounds are determined by the 

three parameters. While there may be conceptual reasons to include bounds in the distribution of costs 

(e.g. forcing costs to be greater than zero), bounds could also be elicited directly, although this would add 

to the number of parameters included in elicitations. Ultimately, the choice of any probability distribution 

that can fit the three percentiles exactly is arbitrary since a three parameter distribution fully utilizes the 

information content of the elicited beliefs.    
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Our elicitation methodology included a process for estimating a Spearman correlation matrix of 2030 

technology costs, 𝑽𝑽𝑇𝑇. Using the 𝑇𝑇-dimensional Gaussian copula, 𝐶𝐶𝑽𝑽𝑇𝑇
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 for each sample, 𝑇𝑇 samples from 

Unif(0,1) with the specified 𝑽𝑽𝑇𝑇 Spearman correlation matrix are drawn. Then, correlated samples from the 

joint distribution of cost given a fixed level of R&D can be found by evaluating the quantile function 

given in Equation (2.2) at the correlated variates using �𝒙𝒙𝒕𝒕;𝑅𝑅𝑅𝑅𝑐𝑐(𝑡𝑡)� as calculated in Equation (2.1). More 

formally, joint samples of 2030 technology costs, 𝒙𝒙∗, are drawn from a joint distribution such that the 

variates are distributed as described in Equation (2.3).  

𝐹𝐹(𝒙𝒙∗|𝑹𝑹𝑹𝑹) ∼ 𝐶𝐶V𝑇𝑇
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (2.3) 

Because �𝑥𝑥𝑡𝑡,𝑝𝑝;𝑅𝑅𝑅𝑅𝑐𝑐(𝑡𝑡)� is weakly monotonic in 𝑅𝑅𝑅𝑅𝑐𝑐(𝑡𝑡), the rank correlations as sampled from the 

copula are maintained under this transformation. An alternative to this approach proposed by Iman and 

Conover (1982) essentially approximates the Gaussian Copula with less precision. Figure 2.3 shows 

example joint samples for 5 vehicle technologies with correlated costs. 



21 
 

 
An example sample from the joint distribution of 2030 costs for five technologies in 2010 USD: battery electric vehicles (BEV), 
advanced internal combustion vehicles (CAR), hybrid vehicles (HYB), plug-in electric vehicles (PEV), and fuel cell vehicles 
(FCV). Marginal sample distributions are shown as histograms in the diagonal plots and joint samples between all pairs are 
shown in scatter plots off the diagonals along with the corresponding rank correlation coefficients, . 
 

Figure 2.3: An Example Sample from the Joint Distribution of Five Technology Costs 
 

Next, for each sample the 2010 and 2030 cost draws are interpolated and extrapolated to construct a 

vector of costs for 2010–2050 in 5-year time steps. This step is necessary to conform to the required inputs 

of the MARKAL model. Because the elicitations only provide estimates of costs in two years (2010 and 

2030), additional assumptions are required, which have a substantial effect on the 2030–2050 

extrapolation region. With the 2030 costs sampled, 2010 costs conditional on 2030 costs are sampled 

using the estimated time correlation, 𝜌𝜌𝑡𝑡 and the expert-elicited probability distribution for 2010 costs, fit 

in the same way as the 2030 distribution. To calculate a sample's 2010 cost, a 2-dimensional copula with 

rank correlation 𝜌𝜌𝑡𝑡 is sampled, conditioning on the 2030 sample's quantile (which was sampled from a 𝑇𝑇-
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dimensional copula). This approach samples from the 2-dimensional copula, representing time-

dependence, conditionally using a numerical approximation at 10−5 precision. Then, the resulting 

quantiles for 2010 are transformed by Equation (2.2), using the 𝒙𝒙𝒕𝒕 values elicited for technology 𝑡𝑡 in 2010. 

Note that for 2010 estimates, there is no need to condition on R&D levels since R&D is constant by 

definition in 2010. For each sample, if the 2030 draw is greater than the 2010 draw, costs are linearly 

interpolated and extrapolated; otherwise, an exponential functional form is imposed. The choice of 

functional form is of little practical consequence in the interpolation region (2010–2030), but has 

important consequences for the extrapolation region (2031–2050). The choice of a linear functional form 

for scenarios with cost increases is consistent with cost increases due to institutional causes, such as 

increasing permitting and licensing costs, which are unlikely to evolve at nonlinear rates. The choice of an 

exponential functional form for cost decreases is conservative in the sense that the rate of cost decrease 

declines from 2030–2050, relative to the rate of cost decrease from 2010–2030. See Figure 2.4 for a 

graphical depiction of these steps.  
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A graphical depiction of dependent sampling of 2010 costs conditional on a sampled 2030 cost. Moving from the top right to 
the left, the 2030 cost is sampled (shown in red) from the estimated distribution based on elicited percentiles (in green). In the 
top center figure, the 2-dimensional Gaussian copula at the 2030 sampled cost defines a conditional probability distribution 
of 2010 cost percentiles, shown in the top left subfigure. The bottom left figure reflects the 2010 cost percentiles, which are 
then transformed across the 2010 elicited distribution, shown in the center frame of the bottom row. These two samples 
together are then used to interpolate costs between 2010 and 2030 using a linear functional form for scenarios with cost 
increases and an exponential functional form for cost decreases. To extrapolate costs to 2050 it is assumed that between 2030 
and 2050 costs follow the same functional form as between 2010 and 2030.  
 

Figure 2.4: Graphical Depiction of Dependent Sampling 
 

2.4 Modeling with MARKAL 

The method proposed in this paper parameterizes the results from the elicitations to use as stochastic 

cost inputs in MARKAL, a detailed energy system model (Fishbone and Abilock, 1981; Loulou et al., 

n.d.). This approach also uses elicited point values of performance metrics, which were held constant 

across samples at expert-elicited values but varied over time. Other model parameters not included in the 

elicitations were held constant at their default values based on the U.S. Energy Information 

Administration’s Annual Energy Outlook (EIA, 2009). MARKAL is a bottom-up, partial equilibrium 
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model of the U.S. economy that is specifically designed to represent technological evolutions of the 

physical energy system occurring over 30– to 50–year periods. MARKAL is solved as a cost minimization 

problem where future states of the energy system are determined by identifying the most cost-effective 

pattern of resource use and technology deployment over time, given exogenously specified energy 

demands (Anadón et al., 2014b; Fishbone and Abilock, 1981; Loulou et al., n.d.). DOE and EPA have 

each developed their own versions of MARKAL for their in-house policy analysis. This study utilizes a 

version of the U.S. multi-region MARKAL model maintained by Brookhaven National Laboratory, one of 

the main operators of MARKAL for DOE.  

MARKAL was chosen for this study for its technical detail which allows us to accommodate the 

nuances of the impact of the technology improvement benefit estimates generated in the expert 

elicitations. For example, MARKAL allows us to include the specific performance characteristics of 

technologies that the experts conditioned on when estimating costs, the solar irradiation profile and 

underground CO2 storage space in each of MARKAL’s 10 geographic regions, and the interaction 

between different vehicle types in satisfying aggregate vehicle demand. Further, MARKAL allows us to 

evaluate social benefits along a common set of metrics while also accounting for the interactions of 

technologies in satisfying market demand.  

The MARKAL model allows us to integrate the results from the suite of expert elicitations in different 

technology areas in a transparent framework with its own assumptions that can be individually assessed6; 

MARKAL is publically-available and many government agencies implement the model themselves. A 

MARKAL scenario run produces hundreds of outcome metrics of potential interest (e.g., CO2 emissions, 

energy costs, oil imports, etc.), many of which could be used to evaluate an R&D portfolio.  

2.5 Optimization 

                                                             
6 The advantages of using a credible and transparent model in a decision making process that involves technical knowledge held 
by interested parties is notably discussed in the context of the Long Range Transport of Atmospheric Pollutants (LRTAP) 
Protocol and the use of the RAINS model during the negotiations (Figueira et al., 2005; Parson, 2002, 1998). By agreeing on 
methodology prior to the introduction of technical assumptions, parties built credibility.  
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Our approach implements a sampling and optimization method that allows for the estimation of the 

optimal allocation of R&D investments at a range of budget levels. For these results, 1,200 MARKAL 

Monte Carlo samples of technology costs are run under a wide range of R&D levels that cover the full 

range of R&D scenarios considered. An importance sampling technique is applied that allows for the 

calculation of the expected value of outcome metrics under specific R&D portfolios that are not pre-

specified (Morgan and Henrion, 1998). This importance sampling approach allows for the flexibility to 

update the technical assumptions of the study without repeating the prior steps of the method, satisfying 

the third design principle. The importance sampling strategy allows one to readily adjust for changing 

input assumptions—such as different R&D levels in the different technologies in the portfolio—without 

requiring additional model runs, thus solving a computational constraint faced by many decision-making 

entities that would otherwise only be able to evaluate a small number of proposed R&D portfolios (Pugh 

et al., 2011).  Additionally, this method’s flexibility to different input assumptions may be particularly 

useful in testing the potentially important sensitivity of results to assumptions from different sources (e.g., 

more optimistic experts, experts internal to the decision making process, experts from stakeholder groups, 

or experts from different countries) and elicitation strategies (e.g., in person interviews, or written 

surveys) (Anadón et al., 2013).  

Using this importance sampling strategy, a response surface of the expected returns across a 

continuous range of R&D levels can be constructed–as represented in subplot F of Figure 2.5. The final 

step of this method is to fit a polynomial response surface to the expected outcomes from the importance 

sampler and use a numerical optimization algorithm to calculate the R&D portfolio allocation that yields 

the optimal outcome (e.g. highest economic surplus) for a fixed R&D budget. This approach optimizes the 

portfolio on the expectation of the outcome metric.  This method follows Principle 4 by using a publicly 

available economic model and explicitly representing conditional distributions of the returns to R&D in a 

way that could be easily communicated to actors external to the decision making process. The names of 

the experts that contributed to the estimates of the impact of public R&D on future technology cost and 

performance are also public (Anadón et al., 2011). 



26 
 

Our approach inputs stochastic realizations of technology cost parameters conditional on randomly 

drawn R&D levels and holds all other model parameters constant across model runs at their default values 

(i.e. technology performance parameters, which were held constant across samples at expert-elicited 

values but varied over time, and other model parameters not included in the elicitations, which were held 

constant at their default values). While the MARKAL model outputs many metrics for a given sampled 

cost vector, this method uses only one outcome metric in the optimization stage, denoted 𝑆𝑆(𝒙𝒙∗).  

The first stage of the optimization is to use the relationship between R&D funding and technology 

costs from the expert elicitation and the relationship between technology costs and the outcome metric, 

𝑆𝑆(𝒙𝒙∗), from many samples, to estimate the expected value of the outcome metric at any specified R\&D 

level in the feasible range. Formally, for a given R&D vector, 𝑹𝑹𝑹𝑹, the goal is to find the expression in 

Equation (2.4). 

𝔼𝔼[𝑆𝑆(𝒙𝒙∗)|𝑹𝑹𝑹𝑹] = �𝑆𝑆(𝒙𝒙∗)𝑝𝑝(𝒙𝒙∗|𝑹𝑹𝑹𝑹)𝑑𝑑(𝒙𝒙∗|𝑹𝑹𝑹𝑹) (2.4) 

However, the distribution 𝑝𝑝(𝒙𝒙∗|𝑹𝑹𝑹𝑹) is computationally intractable for integration due to the 

complexity of the expert-elicited distributions. While this distribution could be simplified to allow for a 

more direct evaluation of the expectation in Equation (2.4), doing so would undermine the integrity of the 

expert assessments. Instead, this approach uses an importance sampling strategy to evaluate the expected 

value in Equation (2.4), using 𝑝𝑝(𝒙𝒙∗|𝑹𝑹𝑹𝑹) as the “target distribution.” The importance sampler is 

represented in Equation (2.5) where 𝛾𝛾 indexes the n=1,200 MARKAL model runs that computational 

constraints allow, and 𝑘𝑘(𝒙𝒙𝜸𝜸∗ ) is a kernel approximation to the entire joint “sampling distribution” of 2030 

costs, described in Equation (2.3). The kernel approximation is used to calculate the “sampling 

probability” to reduce computational requirements and is of little practical consequence.  

𝔼𝔼[𝑆𝑆(𝒙𝒙∗)|𝑹𝑹𝑹𝑹] ≈
1
𝑛𝑛
�

𝑝𝑝�𝒙𝒙𝜸𝜸∗ |𝑹𝑹𝑹𝑹�
𝑘𝑘�𝒙𝒙𝜸𝜸∗�

𝑛𝑛

𝛾𝛾

𝑆𝑆�𝒙𝒙𝜸𝜸∗� (2.5) 

In the second stage of the optimization, the importance sampling strategy is applied to a grid of R&D 

vectors that span the feasible R&D space to calculate the expected outcome metric over the full range of 
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possible R&D portfolios. An 8-unit grid in the 6-dimensional R&D space is used, yielding importance 

sampling calculations at 86 = 262,144 R&D vectors. The grid constructed evaluates all permutations of 

R&D levels at 𝛾𝛾 = 0.5, 0.75, 1, 1.5, 2, 5, 7.5, and 10 multiples of the expert-recommended R&D level. 

These levels were chosen to give higher resolution to R&D levels close to the recommended levels while 

still informing higher R&D levels. Repeating the importance sampling strategy is the most 

computationally expensive step of the method. Future work could address this by investigating techniques 

to reduce the computational burden of evaluating the importance sampler's sampling distribution.  

In the final stage of the optimization, a high dimensional polynomial is fit to the grid of expected 

outcome metrics. In the results presented in the paper a least-squares fit is used  to find a “response 

surface” of the expected outcome metric using the six first-order R&D terms, the thirty six second-order 

R&D terms (including squared terms and interactions). Since the polynomial fits the expected values of 

the outcome metric, the predicted values along the response surface can be thought of as a double 

expected value or a predicted value of an expectation, as shown in Equation (2.6). 

𝔼𝔼[𝑆𝑆|𝑹𝑹𝑹𝑹]� = �̂�𝛽0 + ��̂�𝛽𝑐𝑐𝑅𝑅𝑅𝑅𝑐𝑐 + ���̂�𝛽𝑐𝑐,𝑐𝑐′𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑐𝑐′
6

𝑐𝑐′

6

𝑐𝑐

6

𝑐𝑐

 (2.6) 

The estimated polynomial in Equation (2.6) is used in an optimization scheme to find the vector 𝑹𝑹𝑹𝑹𝛀𝛀
∗  

that maximizes 𝔼𝔼[𝑆𝑆|𝑹𝑹𝑹𝑹� ] under the constraints ∑𝑹𝑹𝑹𝑹 ≤ Ω, where Ω is a budget constraint, and that all 

R&D levels are within their feasible ranges. The results of repeating this optimization at many levels of Ω 

are shown in Figure 3.2. 

Figure 2.5 summarizes the six steps of this method using an example of two technology areas. The 

figure shows the collection of expert belief distributions, fitting probability distributions, sampling from 

the joint distribution, modeling with MARKAL, the Monte Carlo interpretation of modeled results, and 

finally the response surface connecting the set of Monte Carlo results.  
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This figure utilizes projections across relevant dimensions to visualize a schematic example of the methodology described in 
this paper using two technologies as examples, energy storage and vehicles. Subplots (A) and (B) replicate the key features of 
Figure 2.2, namely probability distribution fitting to the expert-elicited cost percentiles at a given level of R&D. The expert 
elicitation provided estimates of the 10th, 50th, and 90th percentile of technology costs in 2030 under three R&D scenarios – 
these are shown with the blue points in the two R&D funding–technology cost spaces highlighted in yellow. For a given 
vector of R&D funding levels in storage and vehicle technologies (RD1*,RD2*), shown by the grey line perpendicular to the 
R&D axes, the approach fits the three-parameter SLL probability distribution to the interpolated percentiles for technologies, 
shown in red. In subplot (C), then the joint distribution of technology costs is sampled, utilizing a dependence structure for 
technology costs – samples are shown as red dots in the highlighted storage cost–vehicle cost space; this replicates the key 
features of Figure 2.3. In subplot (D), for a vector (pair) of technology costs, aggregate outcomes, such as lost economic 
surplus, are estimated using the MARKAL model–the purple line perpendicular to the storage cost—vehicle cost plane shows 
this relationship. In subplot (E), using a LHS approach over storage cost—vehicle cost combinations, the distribution of 
outcome metrics is estimated, as shown with the purple vertical dot plot and superimposed box plot. The boxplot replicates 
the key features of Figure 3.1. Finally, in subplot (F) a response surface is built connecting the box plots that can be used to 
find the portfolio that optimizes the expected outcome metric under a budget constraint.  
 

Figure 2.5: Summary of Methodology from Elicitations to an Optimal Portfolio 
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3. Results 

This section evaluates the results of the suite of model runs parameterized by the expert elicitations in 

several ways. This section considers, in turn, system benefits (e.g. aggregate economic surplus and CO2 

emissions), technology diffusion (e.g. deployment of renewable energy), and uncertainty analysis (e.g. 

high and low percentiles of outcome metrics and the variance in outcome metrics). Each of these three 

classes of methods can be useful inputs to support public energy R&D investment decision making. These 

results are summarized in Figure 3.1, which focuses on a comparison of a BAU R&D portfolio that 

perpetuates Fiscal Year 2009 R&D investment allocations and levels at $2.1 billion (see footnote 4) and 

the “representative” expert-recommended R&D portfolio with a total investment of $5.3 billion7. We 

emphasize in this section the results from analysis parameterized by the representative expert of the suite 

of expert elicitations conducted in 2009 – 2011. We discuss the policy relevance of these findings noting 

that expert assessment of energy technology costs have likely changed since the elicitations were 

conducted. Still, given the long time lags in technological change, these results may still be qualitatively 

relevant for current decision making. More importantly, we hope to illustrate the utility of the 

methodological approach we have described by showing in detail the type of results that could be obtained 

with such an analysis parameterized by new expert elicitations.  

3.1 System Benefits 

In Figure 3.1, the top subplot shows that the recommended R&D portfolio reduces the median 

projection of annual CO2 emissions by 46 million metric tons relative to the BAU portfolio in 2030 and by 

253 million metric tons in 2050. Even with the recommended R&D portfolio, without additional limits, 

results project that CO2 emissions will rise by 7% between 2010 and 2020, inconsistent with the stated 

goal of President Obama (Executive Office of the President, 2013) of a 17% reduction of total greenhouse 

gas emissions below 2005 levels by 2020.  

                                                             
7 The representative expert-recommended R&D portfolio allocates $300 million to bioenergy, $650 million to vehicles, $200 
million to solar PV, $2,850 million to fossil energy, $1,200 million to nuclear energy, and $100 million to energy storage. 
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In terms of other environmental performance metrics, median projected NOx emissions under the 

recommended R&D scenario are 2% lower relative to the BAU scenario in 2030 and 5% lower in 2050. 

SO2 emissions show smaller differences – in 2030 they are virtually equivalent, and in 2050, the 

recommended scenario has median projected emissions 3% lower than the BAU scenario.  

The results in the middle subplot of the figure show that the median projection of annual economic 

surplus8 is $29 billion higher in 2030 and $54 billion higher in 2050 with the recommended R&D 

portfolio relative to the BAU portfolio. Given that the recommended R&D portfolio has a budget $3.2 

billion per year greater than the BAU portfolio, the recommended portfolio has positive net social 

benefits.  

3.2 Technology Diffusion 

The results in the bottom subplot of Figure 3.1 show that median renewable energy deployment 

(energy generated by hydroelectric, wind, solar, and biomass) under business as usual R&D is expected to 

increase from 2010 levels by 160% by 2030 and by over 230% by 2050. Under the recommended R&D 

scenario, these growth rates increase to 170% and 250%, respectively. In levels, the BAU R&D scenario 

increases renewable energy deployment from 2010 levels (approximately 485 TWh) to 770 TWh in 2030 

and 1,130 TWh in 2050, while the recommended portfolio increases renewable energy deployment to 810 

TWh and 1,190 TWh, respectively. This shows that secular trends in renewable energy deployment are 

much larger than the incremental deployment induced by the recommended additional R&D. However, 

these estimates only represent changes due to R&D in a subset of renewable technologies since other 

potentially important renewable energy sources, such as geothermal, solar thermal, and wind, are not 

considered in the elicitations. 

Unlike for renewable technologies, R&D in coal technology is unlikely to substantially alter projected 

deployment rates from 2010-2030 (perhaps due to the long-term nature of coal power plant construction 

                                                             
8 Net (producer and consumer) economic surplus is estimated by MARKAL as the area between the supply and demand curves 
for the full set of goods in the model and does not include most environmental externalities, such as greenhouse gas emissions. 
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and the other institutional factors that build inertia into the system of coal utilization). Projections through 

2030 for coal deployment are virtually identical under the BAU R&D scenario and the recommended 

R&D scenario, with both scenarios estimating a median growth rate between 2010-2030 in coal energy of 

22-24%9 (10.7-10.9 EJ in 2030 relative to 8.8 EJ in 2010). Taken together, these results indicate that R&D 

policy alone is unlikely to substantially affect the deployment of coal energy. 

For crude oil imports, as with coal, high inertia in the system limits the ability of R&D to affect 

outcomes in the short run. In 2030, the recommended R&D scenario has median projected oil imports 2% 

lower than the BAU scenario. However, in 2050, this number increases to 10%. While median projected 

crude oil imports are projected to decrease from 2010 to 2035, even under the BAU scenario, they are still 

projected to increase from 2035 to 2050. Median crude oil price projects are within 2% of each other 

under the two R&D scenarios from 2010-2050. Taken together, this suggests that other non-R&D policies 

would likely be needed to perpetually reduce net oil imports.  

3.3 Uncertainty Analysis 

Figure 3.1 highlights the ability of this method to quantify the uncertainty in evaluation criteria of 

R&D portfolios. The figure allows the estimated distribution of evaluation criteria in different individual 

R&D portfolios to be assessed and compared as part of the R&D portfolio decision making process (DOE 

External Expert Peer Review Panel, 2006). For example, the proposed method allows for the 

quantification of high and low percentiles of outcome metrics. Relative to the business as usual R&D 

scenario, if the 5th percentile or 95th percentile of economic surplus is realized, the benefits of the 

recommended R&D scenario could be $48.2 billion and $89.7, respectively. As another example, under 

the BAU R&D scenario, the difference between the projected 95th percentile and 5th percentile of CO2 

emissions in 2050 is as large as 60% of the difference in median projected CO2 emissions for 2050 and 

2010.  

                                                             
9 Note that the model and expert elicitations were conducted during a period before natural gas prices were forecasted to decline 
as rapidly as they have in recent years due to large shale gas production.  
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Uncertainty can also be evaluated by looking at the variance in outcome metrics. These results show 

that the variance in projected economic surplus in 2030 and in 2050 is statistically greater with the 

recommended R&D portfolio than in the BAU case (F-test for difference in variances has p-value = 0.001 

for 2030 surplus projections and 0.01 for 2050 surplus projections). This demonstrates that while greater 

R&D has positive expected benefits, additional R&D also creates more uncertainty in outcomes.  
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Estimation of benefits of individual R&D portfolios in terms of CO2 emissions, relative economic surplus, and renewable 
energy generation. In the left figures, the dotted lines encapsulate the estimated 90% probability intervals (5th – 95th 
percentiles) and the lightly-shaded regions are estimated 50% probability intervals (25th – 75th percentiles) from 400 Monte 
Carlo samples using the “representative experts” for each of the 6 technology areas. The blue lines/regions show projections 
under the business as usual R&D funding portfolio, whereas the red lines/regions show projections under the expert-
recommended R&D portfolio. In the right plots, kernel density approximations to the distribution of benefits in 2050 are 
shown under the same two R&D scenarios. The top subplot shows CO2 emission benefits; the middle subplot shows economic 
surplus benefits, and the bottom subplot shows renewable energy generation.  
 

Figure 3.1: Distribution of Benefits under Two R&D Scenarios 
 

Greater expected benefits combined with greater uncertainty under greater R&D investments also 

translates into a quantifiable larger probability of desirable outcomes.  For example, this analysis can be 
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used to estimate that under the BAU R&D scenario, the probability that CO2 emissions in 2050 will be 

below 6 Gt-CO2 is 9%, while under the recommended scenario the probability would increase to 66%.  

The use of probabilistic language to talk about the uncertain benefits of R&D through a combination of 

expert elicitations and models using a transparent process would be a positive development in the 

decisions about budget allocations, as it would help move debates away from the credibly of final 

estimates towards the technical assumptions that matter, which are usually less politically vulnerable.  

3.4 Optimized R&D Portfolios 

This section presents an analysis of optimal R&D portfolio allocation under a no-policy scenario, 

shown in Figure 3.2. Overall, results yield four main insights about the optimal allocation of R&D 

resources across the six technology areas that investigated.  

First, there are decreasing marginal returns to R&D. The incremental return to 2030 economic 

surplus from R&D investments is substantially larger at low levels of R&D than at high levels. In the no 

policy case, results show that incremental returns to R&D when $2.5 billion in R&D funding is allocated 

optimally are $139 in economic surplus per year in 2030 for an additional dollar of yearly R&D funding 

allocated to the technology areas with the highest marginal returns at that budget level. Further, there are 

monotonically decreasing marginal returns to optimally-allocated R&D funds over the full range 

considered, a subjectively-defined “feasible range” bounded by the estimates of the expert R&D scenarios. 

However, these results also indicate that there are positive expected returns to economic surplus from 

R&D even at the highest end of the range of R&D budget levels considered. This result implies that there 

are R&D portfolios for the six areas investigated with total budgets greater than $15 billion (more than 10-

times Fiscal Year 2012 levels) that can be justified solely on expected gains to economic surplus realized 

by 2030. If extrapolated to budgets beyond the range considered, this implies an “optimal” R&D level 

beyond $15 billion at which the expected marginal benefits to economic surplus equal the marginal cost of 

R&D investment. However, this method is not able to capture the marginal cost of raising public funds 



35 
 

through revenue-generating policies, such as taxes. The method also does not capture the welfare effects 

of other externalities associated with energy use, such as pollution and energy resource import dependency  

Second, there is a distinct prioritization of R&D investments by technology area. As the R&D budget 

expands, the optimal allocation shifts first towards energy storage, then to solar energy, then to bioenergy, 

then to vehicle technologies, and finally to nuclear and fossil energy. Because there are also decreasing 

marginal returns in the optimally-allocated budget, this result also implies that as the R&D budget 

expands, the marginal returns to R&D investments in single technology areas are greatest for energy 

storage, solar energy, and bioenergy.  This prioritization of R&D investments appears to be robust across 

policy scenarios (optimization for minimizing CO2 emissions reveals strikingly similar results). This is 

likely due to the low current investment levels in these technologies and the high expected economic 

returns to R&D in these areas. 

Third, there are important differences between the current U.S. public energy R&D funding allocation 

and the results of this analysis for R&D budgets close to current levels. Comparing the current allocation 

to the estimated optimum for a $4 billion budget, fossil energy, energy storage, and solar photovoltaic 

technologies are underinvested in. Of these three technologies, this analysis indicates that the technology 

area that would yield the greatest marginal return to economic surplus, given the current allocation, is 

energy storage. 
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The figure show the allocation of R&D funding at different R&D budget constraints between $2.5 billion - $15 billion per 
year, relative to the Fiscal Year 2009 R&D budget allocation. The dark black line in the main plot is the maximum expected 
increase in 2030 economic surplus (above an arbitrary reference point: the expected 2030 surplus in the optimal allocation for 
the $2.5 billion budget) that can be attained for a given R&D budget constraint. The red numbers along the black line are 
estimated marginal returns on investment, calculated by linear approximation to the derivative of the expected 2030 surplus. 
At the lowest R&D budget considered, $2.5 billion, the optimal investment mix is 50% fossil, 24% nuclear, 13% vehicles and 
3-6% storage, solar, and bioenergy. Because this method is constrained by the range of R&D levels that experts considered, 
at low levels of total R&D investment estimates are directed towards the technology areas that received expert 
recommendations for capital-intensive demonstration projects (fossil and nuclear). 
 

Figure 3.2: Optimal R&D Portfolios under a No Climate Policy Scenario 
 

The range of R&D portfolios considered is tied to the elicitations: to reduce model dependence, 

expert-elicited relationships between R&D and technology improvements are not extrapolated, and 

therefore constrain the analysis to only the R&D ranges that experts explicitly considered. In some cases, 

this implies that at low and high R&D budgets, optimum portfolios cannot equate marginal benefits across 

technology areas (see Figure 3.3) because the implied optimum investment level is outside of the range 

considered by experts.  
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The figure shows the optimal allocation and marginal returns to economic surplus from R&D at six example budget levels. 
Corner solutions imposed by the limited range of R&D scenarios considered by experts lead to unequal marginal returns for 
low budget levels. 
 

Figure 3.3: Optimal Allocation and Marginal Returns by Technology Area  
 

4. Conclusions and Discussion 

R&D decisions are complex, require integration of multiple assumptions and metrics, and are 

important for public policy. This paper shows that current practices in energy R&D decision making in the 

U.S. could be improved. The new method developed in this paper is based on a consideration of four 

design principles for an R&D decision making process. This method also highlights the need for analytic 

capability that exists between technical experts and funders of R&D portfolios.  

The method developed in this paper advances the current state of methods available in the literature. 

By operationalizing this method on data from a large set of expert elicitations, the distribution of different 

Vehicles Fossil Energy Energy Storage Solar PV Bioenergy Nuclear Energy Total

allocation
$0.33 bn $1.25 bn $0.08 bn $0.1 bn $0.15 bn $0.6 bn $2.5 bn

marginal 
returns $31 $8.1 $190 $95 $73 $15

allocation
$0.33 bn $1.25 bn $0.66 bn $0.98 bn $1.19 bn $0.6 bn $5.0 bn

marginal 
returns $20 $5.1 $26 $26 $26 $9.1

allocation
$2.27 bn $1.25 bn $0.61 bn $1.15 bn $1.62 bn $0.6 bn $7.5 bn

marginal 
returns $7.7 $4.0 $7.6 $7.7 $7.7 $6.8

allocation
$2.8 bn $1.25 bn $0.57 bn $1.1 bn $1.62 bn $2.65 bn $10.0 bn

marginal 
returns $3.9 $3.5 $3.7 $3.9 $3.9 $3.9

allocation
$2.87 bn $3.13 bn $0.55 bn $1.06 bn $1.59 bn $3.3 bn $12.5 bn

marginal 
returns $2.8 $2.8 $2.8 $2.8 $2.8 $2.8

allocation
$2.89 bn $5.27 bn $0.53 bn $1.02 bn $1.56 bn $3.73 bn $15.0 bn

marginal 
returns $2.1 $2.1 $2.0 $2.1 $2.1 $2.1
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types of benefits under different R&D portfolios can be estimated – while fully propagating the elicited 

uncertainty and accounting for multiple interactions among technologies. Results quantify the aggregate 

benefits of an R&D portfolio in terms of system benefits (e.g. reduced pollutant emissions and economic 

surplus), technology benefits (e.g. the deployment of certain desirable technologies), and uncertainty 

analysis parameters (e.g. statistics of the distribution of other output metrics – such as variance of 

economic surplus or the probability that an R&D portfolio does not increase CO2 emissions above certain 

levels).  This method also allows analysts to test the sensitivity of the results to key assumptions, including 

functional form assumptions, the degree of spillover across technologies, the experts engaged in 

parameterizing the technology improvement distributions, the R&D investment levels, and other 

parameters in MARKAL.  A transparent presentation of the assumptions that drive the calculation of 

benefits could help focus new work on important questions that are unresolved. 

The method presented in this paper also improves on current decision making practices at the DOE 

and several other government organizations, which have demonstrated interest in adopting this type of 

method. However, there are several possible improvements outside of the scope of this paper. First, R&D 

investments could be modeled more realistically. Uncertainties at different innovation stages lead to 

dynamic time-contingencies in the benefits of R&D investments that occur over time. This paper models 

the R&D portfolio decision in a static setting with R&D investment occurring at a single point in time.  

More recent work has emphasized the dynamic, or process nature of the R&D investments and has 

analyzed capacity and congestion effects (Terwiesch and Loch, 1999) as well as strategies for search and 

information gathering (Dahan and Mendelson, 2001; Loch et al., 2001). This implies the need to also 

consider the sequencing of R&D decisions as part of a dynamic R&D decision making problem (Granot 

and Zuckerman, 1991; Santen and Anadón, 2014) because aggregate R&D portfolio decisions may have 

differing impacts depending on the time profile of R&D investments. For example, the large increase and 

then decrease in federal funding for the National Institutes of Health over the past decade may have been 

less effective than a slow and continuous increase (Jaffe, 2012), perhaps in part due to the short-run 
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inelastic supply of scientific expertise (Goolsbee, 1998). A dynamic R&D decision-making framework 

would capture a fundamental aspect of estimating the benefits of an R&D portfolio but would also require 

additional analytical complexity (on top of a framework that is already quite complex). In particular, the 

burden on expert participants would likely be very high.  

A second direction for future work would be to address the challenge of multiple criteria for assessing 

the benefits of R&D that may depend on the different values of stakeholders as well as different technical 

assumptions. Decision makers may disagree on which criteria to use for assessing the benefits of an R&D 

program. To be inclusive, decision makers may wish to consider more than one decision making criteria 

simultaneously (e.g. carbon dioxide emissions, oil imports, and economic growth). There is a long 

literature in Operations Research on decision making with multiple outcome criteria, sometimes referred 

to as multi-criteria decision making (MCDM) (Figueira et al., 2005; Greening and Bernow, 2004; Stewart, 

1991). There is also literature on directly connecting expert opinions to R&D decision making without the 

use of an intermediate model of outcomes (Hsu et al., 2003; Liberatore and Titus, 1983). The method 

presented in this paper can provide the necessary input data to support MCDM by providing estimates of 

social benefits measured by several individual criteria.  

The approach presented in this paper could be used in modelling efforts that help justify and improve 

decision making on R&D beyond the particular application to the DOE that is presented in this work. To 

generate quantitative estimates of the ex-ante benefits of an R&D portfolio, this method relies on expert 

judgment, which is inherently subjective in nature. While the inputs to any ex-ante policy assessment 

require scrutiny, the use of this method to evaluate impacts in a probabilistic fashion can advance public 

debate in many other cases in which the propagation of uncertainty and the interactions between policy 

instruments are important. Beyond R&D investment decisions, there are many contexts in which decision 

making can be supported through the use of a complex model of outcomes with uncertain parametric 

inputs; for example, earth systems models for decisions about mitigating environmental impacts, structural 

economic models for decisions about economic incentives, and engineering systems models for decisions 
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about risk mitigation. The approach presented in this paper has a more generalizable core that addresses 

the common challenge in utilizing these types of models of representing uncertainty in parameters and 

summarizing probability distributions of outcomes that propagate uncertainty (Morgan and Henrion, 1998; 

Raiffa, 1968). 
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A. Appendix 
A.1 Expert Elicitation Protocol 

This appendix provides additional details on the protocol we developed and followed to conduct a 

suite of energy technology expert elicitations in 2009-2010. This protocol is described in greater detail in 

Anadón, et al. (2014b), which forms the basis for this appendix.  

A.1.1 Technology Selection 

We designed and conducted expert elicitations with more than 100 experts10 on seven technology 

areas: fuels and electricity from biomass (bioenergy, for short); different types of utility scale energy 

storage (or storage); residential, commercial, and utility scale photovoltaic technologies (solar); efficiency 

in commercial buildings (buildings); nuclear power from Generation III/III+, Generation IV, and small 

and medium reactors (nuclear); coal and natural gas electricity production with and without carbon 

capture and storage (fossil); and vehicle technologies (vehicles). We were unable to include other energy 

technologies in DOE’s investment portfolio – notably wind power, geothermal power, concentrated solar 

power, advanced lighting, and industrial energy efficiency – in this study owing to limited resources. Due 

to the design of the buildings elicitation, we are not able to quantify uncertainty in building technology 

parameters in MARKAL, and therefore the results of the buildings elicitation are not included in our 

analysis in this paper.  

A.1.2 Expert Selection 

We invited leading researchers and practitioners in each of the seven fields from academia, the private 

sector – including small and large firms – and the U.S. national laboratories to give us their input. We 

asked these experts to estimate technical cost and performance metrics in 2030 under a BAU scenario for 

federal R&D funding for that technology, to recommend the level of annual R&D funding and allocation 

                                                             
10 108 experts gave total and partial answers to the different surveys: 30 participated in the nuclear survey, 25 in the storage 
survey, 12 in the bioenergy survey, 9 in the buildings survey, 9 in the vehicles survey, 12 in the fossil energy survey, and 11 in the 
PV survey. 
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that would be necessary to increase the commercial viability of the technologies in question, and to revise 

their 2030 technology projections under different hypothetical budgets.  

A.1.3 Expert Elicitation Protocol 

Our seven elicitations were carried out using a consistent methodology. We examined four energy 

supply technology areas (fossil, nuclear, solar, biofuels), two energy demand technology areas (vehicles, 

buildings), and one enabling energy technology area (energy storage). Figure A.1 illustrates the different 

tasks that were involved in the design and execution of each of the seven elicitations. Designing and 

fielding each elicitation took between four and eight months. The first phase involved conducting 

extensive research into each technology, which we summarized for expert participants in a background 

information section. 

 
 
Adapted from Anadón et al. (2014b). 
 

Figure A.1: Schematic of the Protocol for Expert Elicitations  
 

In the second phase, we designed the questionnaires for each technology. The questionnaire first asked 

experts to self-assess their expertise in a wide range of technology subfields; we used this information to 
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explore potential biases in experts’ technical assessments. The questionnaire also asked experts to 

recommend an aggregate level of R&D funding, and then to estimate cost and performance metrics once 

in 2010 and then again in 2030 under four scenarios of R&D funding: BAU, half of the recommended 

budget, the recommended budget, and 10 times the recommended budget. The results of this suite of 

conditional cost and performance metrics allowed us to explore the sensitivity of the cost and performance 

estimates to different public R&D investments. A small subgroup of experts (typically two to three) was 

then used to test and refine the first elicitation draft to increase our confidence that each elicitation 

instrument draft would be correctly interpreted by the experts (and that it would provide information in the 

right form to be of use in the next stages of the method). This second phase of fielding the final elicitation 

instrument took between two and three months. 

In the third phase, we collected the names of experts from a range of sources by examining the peer-

reviewed literature, national laboratory programs, university research programs, conference participation, 

and referrals from other experts and our own program’s advisory board. The participant pool we 

assembled covered a range of perspectives and included technical experts from the private sector, 

academia, and the national laboratories.  

In the fourth phase, we engaged experts through email solicitations for participation. For willing 

participants, survey responses were conducted by mailed hard copy or through an online platform. In 

many cases it was necessary to send reminders and hold follow up phone calls to clarify specific questions 

from the participants. On average, experts invested between two and five hours to complete our study’s 

elicitations, not including the interaction with researchers in the cases in which it took place. Designing 

and fielding an expert elicitation is a very labor-intensive process for both study designers and 

participating experts.  

We now turn to describing in more detail the structure of the elicitation instruments. The elicitations 

began an extensive background section divided into four subsections: (i) a summary of the purpose of the 

elicitation (reminding experts of the rationale explained in their invitation via e-mail and phone) and a 

note encouraging experts to contact researchers at all times to answer questions; (ii) a technology primer 
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of material on current technology cost and performance, fuel costs if applicable, a summary of current 

government R&D investments in the technology area, and future cost projections found in the literature; 

(iii) a short tutorial on bias and overconfidence, which included a graphical example on expert’s 

overconfidence estimating the speed of light, and instructions about how to reduce overconfidence, 

including the provision of the expert’s 10th and 90th percentile estimates before the 50th percentile 

estimate, and including the importance of imagining alternate scenarios wherein the true value is outside 

the ranges the expert provided (which should lead to expert to broaden his/her estimates); and (iv) an 

explanation of percentiles, including text using language like that used in the remainder of the elicitation, 

and a graphical representation of interpreting percentiles (Baker et al., 2014).   

The background material served to ensure that all experts had the most recent literature fresh in their 

minds and to encourage them to think consistently about the variables that we would ask them to estimate, 

which included costs, efficiency, and government R&D investments and programs. The elicitation device 

was then divided into four or five sections of questions. 

In Part 1, experts were asked to assess their expertise on specific technologies, components, and 

ancillary topics such as feedstocks, specific technology areas, materials, products, and enabling 

technologies. 

In Part 2, experts were asked to identify commercially viable technologies in 2010, as well as the 

projected cost and performance that would result from a continuation of 2010 federal funding and private 

investments through 2030, assuming no new government policies are implemented. This scenario was 

defined as the BAU scenario.11 

In Part 3, experts were asked to recommend a total annual federal R&D budget for the technology area 

in question. The experts were asked to allocate their recommended budget among basic research, applied 

research, development, and demonstration investments for specific technologies within the general class 

of technologies being assessed (e.g., oxy-fired carbon capture technology was one specific technology in 
                                                             
11 The BAU scenario in this work includes all current deployment policies modeled in the Energy Information Administration’s 
(EIA) Annual Energy Outlook 2010 (EIA, 2010a). Anadón et al. (2011) summarizes the status quo policies in the BAU scenario 
and other future policies categorized into power standards, building codes, transportation policies, and climate policies. It also 
describes the scenarios used to estimate the impact of oil and gas prices. 
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the fossil elicitation). These questions asked experts to visually allocate R&D funds into different 

technology areas and development stages. Experts were also asked to indicate potential coordination with 

other areas of energy technology research, as well as industries that could provide “spillover” innovations. 

In most surveys, experts were also asked to provide their insights into the technological hurdles that could 

be overcome by research in the areas where they recommended the largest investments, and to recommend 

research areas for cooperation with other countries. 

In Part 4, experts were asked to update their BAU 2030 technology cost and performance estimates 

under three scenarios of R&D funding. These scenarios were defined in relation to the level of R&D 

recommended by the experts. First experts estimated 2030 cost and performance metrics assuming their 

recommended annual federal R&D budget was implemented and held constant over the next 20 years. 

Then, experts updated their 2030 estimates under two additional R&D scenarios: a 50% proportional 

reduction in their recommended budget and a 10-fold proportional increase in their recommended budget. 

Having experts re-estimate future technology cost and performance was a crucial part of this analysis 

because it allowed us to estimate the sensitivity of technology outcomes to R&D funding. In the online 

elicitations, technology cost questions under different R&D scenarios were visualized in one graph 

enabling and encouraging respondents to adjust their answers as they were completing the elicitation. 

In Part 5, which was not formally a part of all the elicitations we conducted, experts were asked to 

estimate deployment levels that could be achieved under the four R&D budget scenarios. These 

elicitations also asked experts to think through deployment policies that would contribute to 

commercializing novel energy technologies. In those surveys where deployment was not examined in a 

separate section, experts were asked similar questions about deployment in Parts 2 and 4. 

Four of the elicitations (the bioenergy, fossil, storage, and vehicles surveys) were conducted using a 

written device, which was mailed to participants. The remaining three elicitations (the nuclear, buildings, 

and solar surveys) were conducted online.  Online elicitations improve the ability of experts to modify 

their answers and to visualize them as they input their estimates. We included several graphics that 

allowed the experts to see the uncertainty ranges they specified as well as their estimates of cost and 
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performance under different budget scenarios alongside each other. Online elicitations also accelerated the 

data collection and analysis process, which would be beneficial for future elicitations conducted on a more 

frequent or broader scale. 

At the end of the elicitations, all experts were provided with a written summary of the responses of all 

participating experts, with the ability to change theirs. For the elicitation on nuclear energy, we also 

convened a workshop of the participants in the elicitation we conducted and the participants from a similar 

expert elicitation conducted by the Fondazione Eni Enrico Mattei (FEEM). These experts were given the 

possibility of revising their responses in private after each workshop session. The details of the workshop 

and the lessons learned are described in Anadón et al., 2012 (Anadón et al., 2012). 

For reference, the nuclear energy expert elicitation is publicly available online at 

https://erd3.cloudapp.net/nuclear_energy. 

A.1.4 Qualitative Reviews of Elicitation Results 

We complemented the seven elicitations with qualitative interviews (two to six per elicitation) in 

which we presented the elicitation results to a set of 23 additional experts who were not involved in the 

first round of elicitations but had expertise managing R&D budgets for each technology area and 

experience thinking about investments on a range of technology projects. In these conversations, which 

lasted from one to two hours, we showed the program experts the technology area experts’ recommended 

budgets and technology cost and performance parameter estimates. Their affiliations included DOE 

programs, venture capital firms, and U.S. Congressional committees. These qualitative reviews helped us 

interpret the elicitation results and served to expand expert input in our work. These additional experts 

gave their views on how to synthesize the entire set of results from each of the elicitations and helped 

identify a representative expert in each survey (see Section 1.2.2). 

A.2 Correlation of Future Technology Cost Improvements 
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In Section 1.1.2, we describe the requirements for and the process we used to construct a correlation 

matrix relating the 2030 costs of the 25 technologies considered in this paper. Table A.1 displays this 

correlation matrix, expressed as a Spearman correlation matrix. 
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