A Social Cost Benefit Analysis of Grid-Scale Electrical Energy Storage Projects: *Evaluating the Smarter Network Storage Project*

EPRG Working Paper 1710
Cambridge Working Paper in Economics 1722

Arjan S. Sidhu, Michael G. Pollitt, and Karim L. Anaya

Abstract This study explores and quantifies the social costs and benefits of grid-scale electrical energy storage (EES) projects in Great Britain. The case study for this report is the Smarter Network Storage project, a 6 MW/10MWh lithium battery placed at the Leighton Buzzard Primary substation to meet growing local peak demand requirements. This study analyses both the locational and system-wide benefits to grid-scale EES, determines the realistic combination of those social benefits, and juxtaposes them against the social costs across the lifecycle of the battery to determine the techno-economic performance. Risk and uncertainty from the benefit streams, cost elements, battery lifespan, and discount rate are incorporated into a Monte Carlo simulation. Using this framework, society can be guided to cost-effectively invest in EES as a grid modernization asset to facilitate the transition to a reliable, affordable, and clean power system.

Keywords electrical energy storage, battery, social cost benefit analysis

JEL Classification L94, L98, Q48, D61

Contact asidhu4@jhu.edu
Publication June 2017
Financial Support www.eprg.group.cam.ac.uk