

Simulation and Evaluation of Zonal Electricity Market Designs

EPRG Working Paper 1813

Cambridge Working Paper in Economics 1829

M. R. Hesamzadeh, P. Holmberg, M. Sarfati

Abstract Zonal pricing with countertrading (a market-based redispatch) gives arbitrage opportunities to the power producers located in the export-constrained nodes. They can increase their profit by increasing the output in the day-ahead market and decrease it in the real-time market (the inc-dec game). We show that this leads to large inefficiencies in a standard zonal market. We also show how the inefficiencies can be significantly mitigated by changing the design of the real-time market. We consider a two-stage game with oligopoly producers, wind-power shocks and real-time shocks. The game is formulated as a two-stage stochastic equilibrium problem with equilibrium constraints (EPEC), which we recast into a two-stage stochastic Mixed-Integer Bilinear Program (MIBLP). We present numerical results for a six-node and the IEEE 24-node system.

Keywords Two-stage game, Zonal pricing, Wholesale electricity market, Bilinear

programming

JEL Classification C61, C63, C72, D43, D47, L13, L94

Contact <u>par.holmberg@ifn.se</u>

Publication May 2018

Financial Support SweGRIDS, Swedish Energy Agency, Torsten

Söderberg Foundation, Jan Wallander and Tom

Hedelius Foundation

www.eprg.group.cam.ac.uk