# A plea for innovative and fair remuneration of distribution grids:

# A tale of sticks and carrots

Dr. Christoph Müller Netze BW GmbH 3. Juli 2018

**Netze BW** 

Ein Unternehmen der EnBW





### 1. Types of regulation in a nutshell

- Cost plus regulation
- Incentive regulation
- Incentive regulation with yardstick
- German regulation incentive scheme

### 2. Current discussions around the German incentive regulation scheme

- Future reimbursement of past capital expenditure
- Disincentives caused by unequal treatment of OPEX and CAPEX
- Appropriate level of sectorwide X-factor
- Appropriate level of individual X-factor

### 3. Conclusions



### Why is regulation needed ? (BAUMOL ET AL., 1988)

- > Natural monopoly due to sunk investments (e.g., tubes, pipes, cables)
- > Overpricing can result in welfare losses
- > Waste of resources ("quiet life hypothesis", HICKS, 1935)

### Why is regulation difficult ? (LAFFONT AND TIROLE, 1993)

- > Asymmetric/private information: incentive rules that trade off informational rent extraction and cost-saving inducement
- > Participation constraint: to ensure investments in grids, at least (efficient) costs need to be reimbursed ( $\pi \ge 0$ )
- > Commitment problem of regulators due to sunk investments

# Stylized model of an optimal regulation scheme



Incentives: informational rent extraction

Commitment: Do not take carrot away once the donkey reaches it Cost control: cost cutting requirements

Participation constraint: Do not forget to feed the donkey

### **Types of regulation: cost plus regulation** reimbursement based on actual cost



### Revenue equals cost (including fair rate of return on equity)

$$Rev_t = Cost_t$$

Advantage: budget constraint automatically satisfied

### Disadvantage: waste of resources

- > Allocative inefficiency (AVERCH & JOHNSON, 1962): excessive amounts of capital accumulation, gold-plating
- > X-inefficiency (Leibenstein, 1966): lack of competition makes it possible to use inefficient production techniques, but still stay in business
- > Transaction costs: cost control is very costly for firms and regulator

### No carrot, little stick.

# **Types of regulation: incentive regulation** reimbursement based on a cost budget



#### Revenue cap regulation: reimbursement based on cost budget

$$Rev_t = Cost_0 \times (CPI - X)$$

### Advantage:

- > Budget constraint satisfied (if X is set correctly)
- > Dynamic incentives to lower costs over time
- > Lower transaction costs

### **Disadvantage:**

- > Ratched effect (base year ralley)
- > Requires stable markets (no change of supply task of the DSO)

# Carrot, but very little stick.

Types of regulation: incentive regulation with yardstick reimbursement based on an "efficient" cost budget

Revenue cap regulation: reimbursement based on "efficient" cost budget

$$Rev_t = X_{ind} \times Cost_0 \times (CPI - X)$$

#### Advantage:

- > Budget constraint satisfied (if X is set correctly)
- > Dynamic incentives to lower costs over time
- > Lower transaction costs
- > Punishment for the ratchet effect

### **Disadvantage:**

- > Best you can get is reimbursement of "efficient" cost ( $\pi \leq 0$  rather than  $\pi \geq 0$ )
- > Requires stable markets (no change of supply task of the DSO)

# Very little carrot and a lot of stick, high risk due to reversal of participation constraint.

### **German incentive regulation** mixture of all schemes



### **Revenue cap regulation (simplified formula):**

 $Rev_t = Cost_t^{nc} + X_{ind} \times (OPEX_0 + CAPEX_0) \times (CPI - X) + CAPEX_t$ 

### Non-controllable OPEX: cost-pass-through

### **OPEX**:

- > Minimum of base year OPEX or average OPEX past regulatory period
- > Limits incentives for base year ralley

### CAPEX:

- > Cost-pass-through (beginning with third regulatory period)
- \* "Energiewende" causes substantial investments, reimbursement of CAPEX not guaranteed by previous regulatory system
- > Base-year CAPEX exposed to efficiency benchmark

### **Right balance between carrot and stick?**



### Amendment of the German incentive regulation directive

- > Policy change for CAPEX: from budget approach to cost plus
- > Leads to devaluation of capital assets
- > Investments between 2007 and 2016 are not fully reimbursed

### **Transitional arrangement**

- > Continuance of budget principle for investments 2007 2016 for one regulatory period
- > Still not enough to achieve full reimbursement of past investment

Took away the carrot before donkey reached it.

Classical commitment failure: The right of continuance period should be prolonged to ensure trust in regulation.

# Regulator's fear: Distortions because of unequal treatment of OPEX and CAPEX



### Outline of the problem

- > OPEX is reimbursed on a fixed budget that is exposed to an efficiency benchmark
- CAPEX is yearly adjusted on cost-plus basis, base year CAPEX exposed to efficiency benchmark



fear that firms overinvest (Averch-Johnson-Effect light)

### Necessary condition for Averch-Johnson-Effect:

- > Substitution possibilities between production factors
- > Regulated return on equity is set too high

reality check

Reality check: How much substitution is possible? X Netze BW

### Remember: We transport and distribute electricity using grids.

How much capital

can we

substitute ?

11

# **Distortions due to unequal treatment of OPEX and CAPEX: reality check**



### **Necessary condition for Averch-Johnson-Effect:**

- > Regulated return on equity is set too high
- > Enough substitution possibilities between production factors

### **Reality check:**

> 1000 DSO filed appeal against decision on regulated rate of return



and won in the first instance!

> only limited substitution possibilities between production factors

### Keep in mind:

> Investments are sunk, long-lasting (> 40 years) and exposed to benchmarking. Would a rational investor really risk 40 years of inefficiency?

#### Incentive regulation allows price inflation over time ("nothing gets cheaper"):

- > CPI reflects private consumer price changes (food, housing or clothing)
- > X-factor corrects CPI so that CPI-X corresponds to expected future cost changes in network industry

### X-factor can have any sign (empirical question):

- > = 0: true costs development in network industry like CPI
- > > 0: true costs development in network industry less than CPI
- > < 0: true costs development in network industry higher than CPI

The X-factor imposes no incentive (carrot), but participation constraint could be violated if X is set too high (too much stick).





Only computer, pharmaceutical, oil, steel industry with lower price increases in period under consideration.

# Setting the general X-factor for the future is extremely challenging



### Incentive regulation allows price inflation over time ("nothing gets cheaper"):

> Regulator sets X-factor for gas DSO/TSO equal to 0,48 % for third regulatory period, process still ongoing for electricity DSO/TSO

### **Economic reasoning**

- > True X-factor could well be zero or even less than zero
  - network industry is an old, established industry with low productivity gains
  - high capital intensity with long lasting sunk assets (> 40 years)

### **Empirical evidence**

- > Results from different methods and time periods are inconclusive
- > Estimates range from -2% to 3%

### Setting the X-factor equal to zero is just enough stick!

# The efficiency benchmark can be a stick or a carrot 💦 🕺 🕺 🕺 🕺 🕺 🕺 🕹 Xetze BW

### Benchmark based on the efficient cost frontier

- > Places high weight on consumer surplus
- > Simulates a market equilibrium
- > "All you have to do is to imitate the efficient firms"
- > Budget constraint for an efficient firm:  $\pi = 0$  (else  $\pi < 0$ )

# YardSTICK !

### Benchmark based on an average cost frontier (SHLEIFER, 1985)

- > Reduces risks to the producers, overachievement possible
- > Allows an endogenous adjustment process
- > Provides incentives to push the cost frontier by keeping extra-profits
- > Budget constraint for an efficient firm:  $\pi > 0$  (other firms:  $\pi \leq 0$ )

### **Carrot!**

# German framework: benchmark based on efficient cost frontier



### **Efficient frontier methods**

- > DEA (non-parametric but deterministic) and SFA (parametric but stochastic)
- > TOTEX benchmark using two different CAPEX-definitions

#### **New legislation**

Incentive bonus based on super efficiency score, but same super efficiency score to identify outliers

### True carrot for efficiency or bonus for being different?

# New: transparency (previously: black box), regulator publishes data margin-of-error considerations

- > Applies best of four, with minimum value of 60 %
- > Exogenous adjustment path over five years

### Sufficient risk protection or heavy stick?

# Practical problems of German benchmarking: data collection



#### Data collection

- BNetzA collects more than 800 different variables!
- many of them are difficult to measure precisely
- most of them are not needed anyway (e.g: six different definitions of supply area)
- with new transparency, a lot of data errors became visible



Benchmark gas third regulatory period

### Data validation is important!

# Practical problems of German benchmarking: sample selection



# Sample selection> German DSO are extremely

- heterogeneous
- Sample ranges from very tiny municipal network operators to very big networks operating in large areas
- Very different supply task: distribution and regional transmission (FNB)



Benchmark gas third regulatory period

### What a difference a single DSO can make!

# Practical problems of German benchmarking: model selection



#### Model selection

- > BNetzA selects a single set of cost drivers
- Other combinations possible and equally plausible
- All possible combinations of cost drivers considered by BNetzA in the past (ca. 800 modells)
- Results are not robust: monetary risk is substantial



### Money at risk depends on model selection: range of inefficient cost between 0 and 700 Mio. € (only gas DSO).

# Conclusions



### **Reimbursement of past capital cost**

Regaining confidence in regulation by prolonging transition rule

### **Treatment of CAPEX and OPEX**

Incentives work, currently no need for regulatory change

### Setting the general X-factor

No empirical evidence that X-factor > 0

### Future of benchmarking

### Regain trust in benchmarking:

- > Transparency in data and codes
- > Closer cooperation between industry and regulator to improve data collection and model specification
- > Independent and transparent review process

### Future of benchmarking:

> If incentives work, inefficiencies should vanish over time. Implementation of a stop rule or change to average frontier may be needed.