Annual conference of Cambridge EPRG and, MIT CEEPR

Our world in 2050: Three factors determining how our future will look like

Karsten Neuhoff
Climate Policy Department, German Institute for Economic Research
Economics Department, Technical University Berlin

Berlin, 2.7.2018
What can we learn from experience 90 years ago?

- If climate change triggers economic and social instability, then democratic structures are at risk and global tensions and wars are likely.
- Need to cooperate locally, nationally and internationally to
 - tackle climate change,
 - care for local jobs and local actors as foundation of democracies.
- History shows – transformation can be faster than you think.
Important determinants for our future:
I. Resource and energy efficiency
Why are we interested in materials?

Percentage contribution of various basic materials to global CO2 emissions

Sources of Emissions in Material Production

- Fuel Combustion
- Process
- Power Generation

Source: Based on IEA ETP 2017
Difficult to envisage that RE supply suffices for clean material production, unless portfolio of demand side measures for use of materials successful.

Filling gaps in the policy package to decarbonize Europe’s materials sector

<table>
<thead>
<tr>
<th>Mitigation Option</th>
<th>Gaps in policy package</th>
<th>New / Extended policy instrument to close gap</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share, Repair, Re-use</td>
<td>1. How to enhance recycling?</td>
<td>- Ecodesign directive</td>
<td>Climate Friendly Materials Sector</td>
</tr>
<tr>
<td>More and pure recycling</td>
<td>2. How to create markets for climate friendly options?</td>
<td>- Extended producer responsibility</td>
<td></td>
</tr>
<tr>
<td>Efficient product</td>
<td></td>
<td>- Green public procurement funding</td>
<td></td>
</tr>
<tr>
<td>Efficient manufacturing</td>
<td></td>
<td>- Project based carbon contracts</td>
<td></td>
</tr>
<tr>
<td>Material substitution</td>
<td></td>
<td>- Carbon charge on materials</td>
<td></td>
</tr>
<tr>
<td>Low-carbon processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional processes</td>
<td>3. How to make BAU not a viable perspective?</td>
<td>- ETS including a carbon charge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Emission intensity standard for materials</td>
<td></td>
</tr>
</tbody>
</table>

Summary: Resource and energy efficiency

Challenge: Implementation of policy package

One decisive factor: National Climate Change Law, EU 2030 governance, to provide framework for policies in **all** sectors.

- Lack of demand side policies
 -> Tension on energy/resource markets

- Inconsistent picture for supply side
 -> Public R&D focused policy
 -> Investment limbo

- Successfull demand side policies
 -> Opportunities for local business

- Clarity on vision for supply side
 -> Public & private driven innovation
 -> Investment
Important determinants for our future:
II. System integration
Size of areas proportional to primary input by energy carrier and sector

Based on AG Energiebilanzen (2016)
Unlocking demand side flexibility

- To replace conventional generation and meet extra needs
- Large potentials from e-mobility, electric heating, industry

Unlocking potentials requires
- Tailored proposal & credibility to engage consumers
- Clear interface to distribution/transmission system

Two scenarios:
- Flexibility portfolio managed in centralised systems
- Customers offer flexibility responding to local prices
Summary: System integration

Challenge: Create incentives for households and regional business to unlock flexibility potential

One decisive factor: Local prices

- **No**
 - Cloud-based flexibility control
 - concentration of actors and data
 - accelerated if used for re-dispatch
 - lack of regional anchoring/jobs
 - difficult to align with cyber security
 - Tendency towards autarky
 - Households seek privacy
 - Physical linking of RE and Flex
 - Failure to reach scale and efficiency

- **Yes**
 - Price based flexibility control
 - standardised protocols address cyber security and privacy risks
 - value for system fully remunerated
 - easy market entry for local actors
 - tailored solutions unlock potentials
Important determinants for our future:

III. Financing
Financing costs important for viability of wind and solar

Illustration excludes system costs

Annuitized Investment for wind and solar to replace fossil fuels at
- 10 % capital costs
- 5 % capital costs

Annual expenditure
CO2 at 30 Euro/t
Domestic fossil fuel
Imported fossil fuel

DIW Berlin Calculations based on BP Statistical Review of World Energy; Energy Statistics for the EU-28; Bundesverband Solarwirtschaft e. V.; IEA; European Wind Energy Association; Bundesamt für Wirtschaft und Ausfuhrkontrolle, first published in Energy Journal (2016)
If nothing changes all will change

Floating Premium: As technology costs decline, optionality kicks in, floating premium offers less hedging, financing costs increase, total cost increase.

Without long-term hedging 30% cost increase from
• Project revenue risk (1)
• Liability in LT Contracts (2)

Matches overall assessment (3)

Challenge: Allow simple hedging to facilitate low-cost finance

One decisive factor: Shift to contracts for difference

- Concentration of actors
 - lack of local engagement and support
 - insufficient capacity to realize projects

- Increase of cost to consumer
 - (example Germany 2030 projection)*
 - Floating market premium: 0,8 billion
 - Fixed market premium: 2,7 billion
 - CO2 price only: 3,4 billion.
 - Industry/HH less supportive for RE
 - Speed of transition declines

- Multiple actors compete
 - improves projects/technologies
 - realisation of deployment targets

- Consumers fully benefit from cost
 - RE reductions
 - accelerate electrification
 - accelerate speed of transition

* Source: DIW Berlin, Weekly Report 28/2018
What do we need for our world in 2050?
• Rapid reduction of emissions
• Functioning communities

What is important to make this happen?
• Governance for efficiency policies
• Local prices for system integration
• Remuneration for simple financing