

Climate Paths and Sector Coupling

MIT - CEEPR Meeting

Berlin, July 2/3, 2018

Unique fact base

All sectors

Analysis level: individual GHG reduction measures

Optimized to minimize GHG abatement costs

> Investments, costs, GDP-effects

Climate Paths for Germany

Broad validation of results

68 industry associations and companies

- ~ 200 industry experts
- ~ 40 workshops
- Scientific board

61 % greenhouse gas reduction even under a 'current policies' scenario, but a major gap to national reduction target remains

Greenhouse Gas (GHG) Emissions in Germany Mt CO₂e

80% path achievable with existing technologies

95% path pushes boundaries of technology and acceptance

340 TWh imports ofrenewable fuels (PtL, PtG)

Energy: 292 GW wind and PV, grid expansion Energy: 100% renewable through PtG, gas grid as seasonal storage facility

Buildings: 70% more insulation/refurbishments — (1.9% p.a.) Buildings: 100% emissionsfree heat (esp. through 16M heat pumps and district heating) Industry: 100% renewable heath through biogas/PtG ... Industry: ... produced with recycled carbon from biomass combustion

> 33M electric vehicles, 4/5 of passenger cars Transport: 8,000 km of freeway equipped with truck overhead lines

> > Agriculture: "Methane pill" for the cattle population Carbon capture and storage for steel, cement, steam reforming, refineries, and waste incineration

95 % target requires zero emissions in most sectors

Net electricity consumption increases only moderately

Net electricity consumption by application (in TWh)

Current Policies

80% Climate Path

95% Climate Path

Power flexibility 'merit order': PtX needed for long-term storage

Increase amount of generated power that matches given demand; avoid grid related curtailments

Flexibilize 'direct' consumers, i.e. Power-to-Heat, heat pumps electric vehicles Focus demand on periods with sufficient available renewable power

Secure short term storage

Batteries and pump storages important elements to bridge short-term production and demand peaks

Accept curtailments of renewables, which are concentrated on very few hours per year Technologies built <u>only</u> around such 'excess power' are not economically viable

Secure carbon-neutral long-term storage (and fully decarbonize other sectors) Hydrocarbons needed for interseasonal power storage and for decarbonizing 'beyond' electrification

Fundamental change in energy mix, significant import reduction

Primary energy consumption across all German sectors (TWh)

"Demystification" of German climate paths

Technology breakthroughs in PV, H₂ or storage would increase option space

80% economically feasible—95% only possible globally

80% Climate Path

€1,500B (energy €430B)

€470B (energy €156B) Avg. €15B annually

95% Climate Path

€2,300B (energy €620B)

€960B (energy €196B) Avg. €30B annually

Í

GDP effect

economy¹

Additional investments¹

Additional cost to the

At least a breakeven in all scenarios

Breakeven in case of global cooperation

Major investment effort Feasible on a macroeconomic level

Major social and technological effort Only feasible with a global consensus

1. Cumulative for the years 2015 to 2050; including investments and additional costs of the reference; Capital costs calculated with a macroeconomic interest rate of 2%, imports at border-crossing prices

Summary

No new technologies needed

- G20 nations could close at least two thirds of the gap between current-policies emissions and their 2°C contributions with proven technologies
- Also for the remaining gap solutions exist today

Systemic, economically optimized approaches required

- All countries should install systemic economic optimization as guiding principle.
- Many countries can take significant unilateral action without suffering an early-mover disadvantage
- All could benefit economically from moving closer to its 2°C emission target

Time to move

- Policymakers should take a systemic view across sectors and develop national mitigation agendas that maximize economic gain
- Companies need to prepare for a world with accelerated growth in carbon-neutral technologies and declining fossil fuel consumption

BCG

THE BOSTON CONSULTING GROUP

bcg.com