Global gas markets, carbon pricing and the future of natural gas

Robert A. Ritz

Energy Policy Research Group (EPRG)
Cambridge Judge Business School
r.ritz@jbs.cam.ac.uk

MIT CEEPR-EPRG-EnBW European Conference Berlin, 3 July 2018

- 1 Gas demand, prices and competition
- (2) Coal-to-gas switching in power generation
- 3 Political economy & carbon pricing
- 4 Strategic positioning

Forecasts too bullish given challenges for gas?

Regional price divergence is the historical norm

"Asian premium":

- Most of last 20 years
- Imperfect competition
 - + limits to arbitrage

Low & stable HH price

- → US LNG exports
- → Security of supply (LNG vs pipeline gas)

⇒ Global convergence to Henry Hub-based pricing?

Source: Calculations based on IMF data

Competition in global LNG: A changing market

Balance of power: Shift to gas buyers post-2014

Global price decline (comparable to oil)

LNG market structure:

	2007	2012	2017	2022
Seller HHI	.102	.140	.136	↑? Further
(# players)	(14)	(18)	(18)	US & AUS
Buyer HHI	.218	.180	.132	↓? Smaller
(# players)	(18)	(27)	(39)	Asian

⇒ LNG sell-side now *more* concentrated than buy-side

Note: Herfindahl index (HHI) is a measure of market concentration, ranging from 1 (monopoly) to 0 (many small players) Source: Calculations based on GIIGNL data

- 1 Gas demand, prices and competition
- (2) Coal-to-gas switching in power generation
- (3) Political economy & carbon pricing
- 4 Strategic positioning

Coal-to-gas switching from a climate perspective

How much delay in adoption of near-zero carbon technologies (NZCT) is achieved by switching to gas?

<u>Parity ratio</u>: Allowable years of gas per year of coal generation avoided

- Literature: ≈ 2.4 years
- Coal plant replaced 15 years before otherwise replaced by NZCT
- Gas can operate for ≤ 36 years, helping climate

⇒ "Bridge fuel" buys 1.4 years per year of coal displaced

Source: Adapted from Hausfather (2015)

Thought experiment: Global coal-to-gas switch

Q: How much existing coal-fired power generation can be replaced with existing *unused* gas generation?

Top 5	"Gas potential"	
China	6%	
US	47%	
India	12%	
Russia	37%	
South Korea	35%	

- European countries: mostly >100% potential
- Zero potential: Japan,
 Mexico, Poland, Kazachstan

A: Global switching potential ~20% with existing assets

- ⇒ Annual global carbon emissions fall by ~1 GtCO₂
 - Social value: ~\$50 billion per year

Source: Grant Wilson & Staffell (2018), 2015 data

- 1 Gas demand, prices and competition
- (2) Coal-to-gas switching in power generation
- 3 Political economy & carbon pricing
- **4** Strategic positioning

UK: Carbon price floor supports gas switch

Coal phase-out now policy objective (for 2023)

Carbon price floor

- EU ETS + £18/tCO₂
- **Emissions** performance standard
- \Rightarrow Coal share from 41% (2013) to 8% (2017)

Case for CO₂ price floor on power generation

Regional or EU level

Source: SNAM 2017 Global Gas Report

India: Gas currently squeezed by coal & solar

No clear role for gas/LNG

- Not cost-competitive against domestic coal
- Limited policy support
 - No carbon pricing
- Infrastructure constraints

Skipping gas? Coal to RE

- Ambitious 175 GW target for 2022 (esp. solar)
 - Large cost reductions & low auction prices

Source: International Institute for Strategic Studies (IISS) & Vivid Economics

- 1 Gas demand, prices and competition
- (2) Coal-to-gas switching in power generation
- (3) Political economy & carbon pricing
- 4 Strategic positioning

Gas industry itself is in the midst of a transition

Strategic repositioning around natural gas:

- ① Energy majors: oil → gas/LNG & power/RE
- ② Electricity companies: coal/gas → RE
- ③ Commodity traders: oil → LNG
- (4) Private equity: → "legacy" coal/gas assets
- (5) New players: → LNG export, gas E&P

⇒ Trend to *large integrated* or *niche specialist*?

Conclusions

- 1 Significant downside risk in gas demand forecasts
- (2) Global gas price convergence: not any time soon
- 3 Huge global potential for coal-to-gas switching in power generation
- 4 Local **political economy** for gas/LNG in non-OECD (Asia) very different from OECD (Europe)
- 5 Ongoing strategic repositioning reflects companies' different visions of the future

References

Grant Wilson, I.A. and Iain Staffell (2018). Rapid fuel switching from coal to natural gas through effective carbon pricing. Nature Energy 3, 365-372

Hausfather, Zeke (2015). <u>Bounding the climate viability of natural gas as a bridge fuel to displace coal</u>. *Energy Policy* 86, 286-294

Newbery, David, David Reiner & Robert Ritz (2018). When is a carbon price floor desirable? EPRG Working Paper 1816 https://www.eprg.group.cam.ac.uk/eprg-working-paper-1816/

Ritz, Robert (2014). <u>Price discrimination and limits to arbitrage in global LNG markets</u>. <u>Energy Economics</u> 45, 324-332 http://www.econ.cam.ac.uk/people-files/affil/rar36/pubs/RobertRitz_LNG_July2014.pdf

Ritz, Robert (2018). <u>A strategic perspective on competition between pipeline gas and LNG</u>. Working Paper, January 2018 http://www.econ.cam.ac.uk/people-files/affil/rar36/pubs/RobertRitz_SPGC_Jan2018-final.pdf