
 

 

www.eprg.group.cam.ac.uk 

 

 

Pricing in Day-Ahead Electricity Markets with 
Near-Optimal Unit Commitment 

EPRG Working Paper      1840 

Cambridge Working Paper in Economics      1872 

Brent Eldridge, Richard O’Neill, and Benjamin 
F. Hobbs 

 

 

Abstract  This paper revisits some peculiar pricing properties of near-optimal unit 

commitment solutions. Previous work has found that prices can behave erratically even as unit 

commitment solutions approach the optimal solution, resulting in potentially large wealth 

transfers due to suboptimality of the solution. Our analysis considers how recently proposed 

pricing models affect this behavior. Results demonstrate a previously unknown property of one 

of these pricing models, called approximate Convex Hull Pricing (aCHP), that eliminates 

erratic price behavior, and therefore limits wealth transfers with respect to the optimal unit 

commitment solution. The absence of wealth transfers may imply fewer strategic bidding 

incentives, which could enhance market efficiency. 

 

Keywords  Unit commitment, nonconvex pricing, mixed integer programming, 

market design 

 

JEL Classification C60, C72, D44, D47, L94 

 

Contact beldrid2@jhu.edu; Richard.ONeill@ferc.gov; 
bhobbs@jhu.edu  

Publication  November 2018 
Financial Support NSF 1408366, DOE-OE Advanced Modeling Grid 

Research Program 
  

mailto:beldrid2@jhu.edu
mailto:Richard.ONeill@ferc.gov
mailto:bhobbs@jhu.edu


Pricing in Day-Ahead Electricity Markets with

Near-Optimal Unit Commitment

Brent Eldridge∗1,2, Richard O’Neill†1, and Benjamin F. Hobbs‡2

1Federal Energy Regulatory Commission§, Washington, DC 20426
2Environmental Health and Engineering Department, Johns Hopkins University, Baltimore, MD 21218

November 28, 2018

Abstract

This paper revisits some peculiar pricing properties of near-optimal unit commitment solutions. Pre-

vious work has found that prices can behave erratically even as unit commitment solutions approach

the optimal solution, resulting in potentially large wealth transfers due to suboptimality of the solution.

Our analysis considers how recently proposed pricing models affect this behavior. Results demonstrate

a previously unknown property of one of these pricing models, called approximate Convex Hull Pricing

(aCHP), that eliminates erratic price behavior, and therefore limits wealth transfers with respect to the

optimal unit commitment solution. The absence of wealth transfers may imply fewer strategic bidding

incentives, which could enhance market efficiency.

1 Introduction

Changes to traditional pricing methodologies in electricity markets continue to stir controversy. Wholesale

electricity markets are often conceptualized as a uniform price auction, such that setting the price equal

to the marginal system cost provides the correct incentives for all participants to produce and consume

electricity at their socially efficient levels. However, uniform prices are not guaranteed to clear the market

because of important nonconvexities in the production capabilities of many generating facilities [1]. These

nonconvexities create the need for side payments to ensure that generators do not suffer financial losses by

following the socially efficient schedule [2] as well as rules to discourage production from generators who are

not part of the least-cost schedule. Thus, the crux of the pricing controversy is whether to adhere to the

usual marginal pricing policy or if an alternative pricing scheme with somehow lower side payments or better

incentives can be formulated and adopted.

Price formation issues attracted interest from FERC following severe weather events in the winter of

2014-2015 that highlighted the role of prices in aligning dispatch incentives, maintaining reliability, signaling
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efficient investments, and maximizing the market surplus [3]. A subsequent Notice of Proposed Rulemaking

(NOPR) highlighted the inclusion or exclusion of nonconvexities in pricing methodologies, i.e., start-up and

no-load operating costs, minimum output levels, and minimum run times. This NOPR proposed to create

uniform “fast-start” pricing rules for resources with quick response times [4]. Such resources are typically

“block-loaded,” operated at full capacity or not at all, and thus unable to set prices when the normal marginal

cost criterion is used. All ISOs currently implement some form of fast-start pricing, but to varying degrees

based on their resource mix and compatibility with existing ancillary service markets [4–10]. Rather than

pursuing uniform rules in all six ISOs and RTOs under FERC’s jurisdiction, FERC concluded the NOPR by

opening new dockets to examine specific pricing rules for New York Independent System Operator (NYISO),

PJM Interconnection (PJM), and Southwest Power Pool (SPP) [4]. While these issues are relevant in both

the US and Europe, US markets solve nonconvexities in a centralized fashion whereas European markets

require participants to internalize nonconvexities in their offer. This paper focuses on the treatment of

nonconvexities as now undertaken in US markets.

The main contributions in this paper stem from Gribik, Hogan, and Pope’s initial paper on convex hull

pricing [11]. We address a previously unappreciated issue concerning how convex hull pricing affects a prob-

lem with centralized unit commitment, first discussed by Johnson et al. [12] and later by Sioshansi et al. [13].

These papers discuss how the selection of a near-optimal solution may entail significantly different financial

outcomes for individual market participants despite little or no gains in productive efficiency compared to the

actual optimal solution. Our paper relates these previous results to two computationally simplified versions

of convex hull pricing. These two pricing models result in appreciably different levels of stability of financial

outcomes relative to outcomes in the optimal unit commitment solution. The results have significant impli-

cations in the ongoing electricity pricing debate and, to our knowledge, have not been recognized previously

in the convex hull pricing literature.

The remainder of Section 1 provides additional background about some of the economic and mathematical

issues within the electricity market scheduling problem, called unit commitment. Section 2 formulates a

standard unit commitment model and three pricing models. Section 3 summarizes market outcomes for each

pricing model using a set of near-optimal unit commitment solutions to a test case based on PJM [14] and

Section 4 concludes the paper.

1.1 Background

So-called “fast-start” pricing [4] is a specific instance of the nonconvex pricing problem, for which there is

generally no completely accepted method for pricing and settlements. Difficulties in resolving nonconvex

pricing issues stem from the presence of ‘lumpiness’ or ‘indivisibilities’ in the production sets of electric

generators [1]. There are a few common instances of this problem, for example, a generator that:

• has a minimum output constraint such that it cannot feasibly produce power at a level less than some

threshold value, unless it produces exactly zero,

• incurs fixed costs that are required to begin producing power but are otherwise independent of the

amount of power produced, or

• must remain on-line or off-line for a specified amount of time before shutting off or coming back on-line.
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Rather than being rare or pathological examples, the above features are common to most power generating

units. These nonconvexities can cause the need for side payments, “make-whole” payments, that are paid

to participants who are part of the optimal unit commitment schedule but do not recover their offered cost

through the uniform energy price.

The settlement method of paying the locational marginal price (LMP) together with make-whole pay-

ments to suppliers who would otherwise not cover their variable costs, traditionally used in US markets,

is formally presented in [2]. One of the objections to this approach is that too many side payments can

cause poor incentives for participants to reveal truthful offers to the ISO, similar to a pay-as-bid auction.

Reduction or elimination of these side payments (which may be make-whole payments or may fall into a

broader category of “uplift” payments) has been proposed through various optimization models [15–19] and

equilibrium models [20–22]. Some of these methods ensure that the optimal primal solution is supported, but

others can result in a changed and possibly suboptimal schedule [22]. Because market efficiency is a primary

goal of federal policy, US regulators are unlikely to approve schemes of the latter sort. Of the alternatives

to LMP, convex hull pricing has attracted the most attention. This approach minimizes lost opportunity

costs as defined by a computationally intensive Lagrangian dual problem that consists of separable profit

maximization problems [11].

Schiro et al. describe hurdles to implementation of convex hull pricing [23]. For example, its properties

cannot be guaranteed because the convex hull prices are difficult to calculate accurately in realistic market

scheduling problems [23]. Instead of solving the Lagrangian dual directly, we use a computationally efficient

primal approach by implementing tight UC constraints from [24–26]. Tightening the unit commitment

problem to approach a primal convex hull formulation can become increasingly complex as additional time

periods and resource details are considered. Examples of such details include combined cycle gas turbine

(CCGT) transitions, time-dependent start up costs, hot- and warm-start-up types, and other operational

details that won’t be the focus of this paper. We refer to [28] for additional methods to tighten the unit

commitment formulation.

Time constraints for publishing results of the day-ahead market often prevent modern MIP software

from providing a provably optimal unit commitment solution in large electricity markets. Instead, ISO

scheduling software runs until the solution meets a so-called “MIP gap” tolerance, an upper bound that

defines acceptably near-optimal solutions [29]. Pricing issues stemming from such near-optimal solutions

were first identified by Johnson et al. [12]. Their paper shows that each near-optimal commitment schedule

that might be chosen by an ISO results in a different set of prices and therefore causes wealth transfers

that depend on the ISO’s discretion. Later, Sioshansi et al. showed that the same problem occurs in more

efficient mixed integer programming software similar to what markets use today [13].

The price behavior shown by Johnson et al. and Sioshansi et al. in theory undermines incentives for

participation in the ISO’s centralized unit commitment [13]. Prices may have limited value for signaling

efficient market behavior when there are large price differences between various near-optimal solutions. If

market participants become aware of favorable financial outcomes in a lower cost solution, then they could

argue that the ISO’s actual schedule was arbitrary and capricious since it resulted in lower profits. This

has not yet been argued in legal proceedings, but it is not clear if this is because such claims would be

insubstantial or because market participants lack awareness of what their financial outcome would have been

if the ISO had selected the true optimal solution. Interestingly, similar real-world disputes are described

in [29], stemming from low-cost renewable resources that should have been “in-the-money” but were not
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selected by the ISO’s scheduling software.

Whether the unit commitment solution is optimal or not, some unscheduled resources may appear

profitable given the ISO’s posted prices, and these resources may have a profit maximizing strategy to

hedge against the opportunity cost of not being dispatched by “self-committing” or “self-scheduling.” Self-

commitments entail scheduling only the minimum output (i.e., submitting an offer with zero fixed operating

costs), while self-scheduling typically schedules the full capacity of a resource (i.e. submitting an offer with

zero total cost). Self-commitments and self-schedules account for about 41% of all offers in PJM’s day-ahead

market, including about 10% of combined cycle gas turbine generation and 40% of steam turbine genera-

tion [30]. Self-commitments and self-schedules account for 78% of the committed resources in Midcontinent

ISO (MISO) [31]. Many self-commitments may be the result of insufficient modeling of resource configu-

rations [32], but some resources may be exhibiting strategic behavior that undermines the efficiency of the

ISO’s centralized scheduling process. An example is provided in the Appendix.

While this paper focuses on the day-ahead market, recent work has made progress analyzing how pricing

methodologies affect long-term investment decisions [33–35]. Herrero et al. shows that a “linear” pricing

rule, based on convex hull pricing, results in an equilibrium investment plan that is closer to the socially

optimal plan than when using a “nonlinear” pricing rule based on the LMP and that this gap widens as

start-up costs become a higher portion of total costs [33]. Vazquez et al. proposes a pricing model with

scalable generators, similar to the “dispatchable” model proposed in [11], and shows that it results in an

efficient investment plan where the LMP does not [34]. Mays et al. calculates equilibrium investment plans in

a realistically sized test system and shows that the convex hull price comes closest to supporting the efficient

long term investment plan [35]. However, the results in each of these papers [33–35] may be case-dependent,

and Mays et al. provides a simple example to show that the results are not generally applicable [35].

Good market design is multifaceted and requires careful analysis and balancing of a wider range of

issues than are discussed here. The analysis in this paper compares the standard LMP methodology and two

computationally simplified versions of convex hull pricing with respect to the problems described by Johnson

et al. [12] and Sioshansi et al. [13]. In particular, both papers state that the problems in electricity pricing

stem from the use of centralized unit commitment. Our results show that the magnitude of this problem

depends crucially on the pricing methodology employed and is not an immutable property of centralized unit

commitment itself.

2 Models

2.1 Unit Commitment

Scheduling software used by ISOs solves a mixed integer program (MIP) for the optimal unit commitment

schedule. Each day, ISOs collect bids and offers that define consumer valuations and producer costs, respec-

tively, and are used to calculate price and quantity schedules that will maximize the total market surplus.

Bids are assumed to be equal to the value of a consumer’s power demand, and offers equal to the cost of

a producer’s power generation. Demand will be assumed to be fixed, so market surplus is maximized by

minimizing the as-bid cost of accepted offers.

The formulation below is broadly similar to models used by ISOs [14], except that transmission con-

straints, operating reserves, and price responsive demand are excluded for simplicity. Some constraints have
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been reformulated to give tighter lower bounds when the problem’s binary constraints are relaxed [24–26].

The following variables describe the feasible production schedules for a generator g ∈ G in time period t ∈ T :

pgt: Quantity produced by g in period t

wgt: 1 if g operates in period t, or 0 otherwise

xgt: 1 if g starts up in period t, or 0 otherwise

ygt: 1 if g shuts down in period t, or 0 otherwise

We now introduce constraints to define the feasible region of the UC problem. The first constraint

balances the total production quantity with fixed demand Dt at time t.∑
g∈G

pgt = Dt, ∀t ∈ T (1)

Additional constraints will satisfy generator minimum up and down times, ramp rates, and minimum

and maximum output. They depend on the values of the operating status wgt, start-up xgt, and shutdown

ygt, which are related by the following constraints.

xgt − ygt = wgt − wgt−1 ∀g ∈ G, t ∈ T (2a)

xgt, ygt ≥ 0 ∀g ∈ G, t ∈ T (2b)

When wgt and wgt−1 are constrained to be binary, the constraints in (2) will also force xgt and ygt to take

on only binary values. These binary variables help define nonconvex constraints.

Minimum up-time and down-time constraints require generators to remain on-line for at least Tupg periods

after a start-up and offline for at least T dng periods after a shutdown.

wgt ≥
∑
τ∈(t−Tup

g +1,t)xgτ ∀g ∈ G, t ∈ T (3a)

wgt ≤ 1−
∑
τ∈(t−Tdn

g +1,t)ygτ ∀g ∈ G, t ∈ T (3b)

Production in adjacent time periods is constrained by generator ramp rate limits up and down, Rupg and

Rdng , respectively. Generator minimum output is typically higher than Rupg or Rdng , so to ensure feasibility,

we assume the generator’s ramping capability is equal to Pmin
g during a start-up or shutdown sequence. We

implement the two-period ramp inequalities proposed in [24] as follows.

pgt ≤ pgt−1 + (Pmin
g +Rupg )wgt − Pmin

g wgt−1 −Rupg xgt, ∀g ∈ G, t ∈ T (4a)

pgt−1 ≤ pgt + (Pmin
g +Rdng )wgt−1 − Pmin

g wgt −Rdng ygt, ∀g ∈ G, t ∈ T (4b)

Generator output is constrained to zero when wgt = 0, or between Pmin
g and Pmax

g when wgt = 1.

Additionally, the formulation proposed in [25] lowers the upper bound to Pmin
g during a start-up period or

before a shutdown period. The constraint is implemented differently depending on minimum up-time, for

two generator sets g ∈ G+ = {G|Tup ≥ 2} and g ∈ G− = {G|Tup < 2}.

pgt ≤ Pmax
g wgt −

(
Pmax
g − Pmin

g

)
xgt −

(
Pmax
g − Pmin

g

)
ygt+1, ∀g ∈ G+, t ∈ T (5a)

pgt ≤ Pmax
g wgt −

(
Pmax
g − Pmin

g

)
xgt, ∀g ∈ G−, t ∈ T (5b)

pgt ≤ Pmax
g wgt −

(
Pmax
g − Pmin

g

)
ygt+1, ∀g ∈ G−, t ∈ T (5c)
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Lastly, we introduce constraints to define piece-wise linear generator costs, cgt, using the formulation

proposed in [26].

cgt − Ĉgkwgt ≥ M̂gk

(
pgt − P̂gkwgt

)
, ∀g ∈ G, t ∈ T , k ∈ K (6)

The cost function constraints are formulated in point-slope form with sampled cost Ĉgk and quantity P̂gk

values at each step k. Sampled costs reflect no-load costs as well as variable or fuel costs. The generator’s

marginal cost at each step is M̂gk = (Ĉgk+1−Ĉgk)/(P̂gk+1−P̂gk). So long as Mgk is monotonically increasing

in each step k, minimization of cgt in the objective will result in a convex cost function [36]. The terms

P̂gkwgt and Ĉgkwgt ensure that cost is equal to zero in time periods when the generator is not operating and

also shrink the size of each step in the piecewise linear curve when wgt is allowed to take values between zero

and one.

The unit commitment model is formulated below for a 24-hour day-ahead market. Although not written

explicitly, intertemporal constraints (2)-(5) have been implemented with circular referencing such that hour

1 is assumed to follow hour 24. For example, a generator with a minimum run time of four hours that starts

up in hour 24 will also be required to remain on in hours 1, 2, and 3. The formulation highlights the binary

constraint for wgt, but constraining additional binary variables xgt and ygt resulted in substantially faster

solution times.

UC model: min z =
∑
t∈T

∑
g∈G

(cgt + Fgxgt) (7a)

s.t. Constraints (1)-(6) (7b)

wgt ∈ {0, 1}, ∀g ∈ G, t ∈ T (7c)

The objective value z includes piece-wise linear costs cgt plus start-up costs Fgxgt. Shutdown costs can be

included in Fg if necessary. The optimal solution to (7) is denoted with an asterisk, e.g., w∗gt.

2.2 Pricing Models

Since model (7) is a MIP, there is no standard method to calculate shadow prices from a dual problem [36].

In contrast, the following three linear programs (LPs) are based on (7) but have well-defined dual programs.

Each pricing model is solved subsequent to the execution and solution of the unit commitment model (7),

and the resulting prices are determined from the pricing model’s dual variables.

First, the model proposed in [2] fixes integer values to their optimal value. Prices can only be set by the

marginal cost of scheduled resources, as is the usual practice in ISO markets.

LMP model: min z =
∑
t∈T

∑
g∈G

(cgt + Fgxgt) (8a)

s.t. Constraints (1)-(6) (8b)

wgt = w∗gt, ∀g ∈ G, t ∈ T (8c)

The following two models relax binary constraints and are approximations of the approach proposed

in [11]. This allows prices to reflect fixed operating costs or the cost of operating at minimum output for

generators that are part of the ISO’s schedule (in the “restricted” rCHP model) or for any generator that
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submits an offer to the ISO (in the “approximate” aCHP model).

rCHP model: min z =
∑
t∈T

∑
g∈G

(cgt + Fgxgt) (9a)

s.t. Constraints (1)-(6) (9b)

0 ≤ wgt ≤ w∗gt, ∀g ∈ G, t ∈ T (9c)

aCHP model: min z =
∑
t∈T

∑
g∈G

(cgt + Fgxgt) (10a)

s.t. Constraints (1)-(6) (10b)

0 ≤ wgt ≤ 1, ∀g ∈ G, t ∈ T (10c)

The prices in each respective model are equal to the value of the dual variables of constraint (1) and are

denoted λ∗t .

2.3 Price Supports

Due to the non-convex nature of unit commitment, it often occurs that there is no set of uniform, nondis-

criminatory prices such that all participants can maximize their profits by following the socially optimal

schedule [1,2]. In the absence of side payments, generators receive quasi -linear1 profits π∗g , hereafter referred

to simply as “linear” profits.

π∗g =
∑
t∈T

(
λ∗t p
∗
gt − c∗g − Fgx∗gt

)
(11)

A generator’s lost opportunity cost, LOCg, is the increase in linear profits if it optimizes its schedule given

prices λ∗t .

LOCg = max
∑
t∈T

(λ∗t pgt − cg − Fgxgt)− π∗g (12a)

s.t. Constraints (2)-(6) for g (12b)

wgt ∈ {0, 1}, ∀t ∈ T (12c)

Offering lost opportunity cost payments may lead to revenue inadequacy in the ISO. Simple examples

show that lost opportunity costs may be higher than the market surplus; Mays et al. [35] gives an example

to this effect using a zero-cost generator with minimum output greater than total demand in the market.

Payment of lost opportunity costs also allows more opportunities to exercise market power because potentially

many participants would be eligible to receive such payments. These participants can offer below true costs

to inflate their lost opportunity cost payment.

While full lost opportunity cost payments may be problematic, higher lost opportunity costs may imply,

in theory: (1) stronger incentives for strategic behavior that would result in market inefficiency, and (2) the

need for additional market rules that contribute to increased overhead costs. This paper’s results include

1Quasi-linearity denotes that revenues, λtpgt, are linear and and costs, cg + Fgxgt, are nonlinear, each with respect to

production level pgt.
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lost opportunity cost figures to measure how well each price model supports the commitment schedules. An

example of strategic self-commitment behavior that decreases market efficiency is provided in the Appendix.

LMPs are equal to the strictly-defined marginal cost to supply an additional unit of demand, given the

submitted bids and offers. Standard duality analysis of simple examples reveals that the LMP provides the

right incentives for all dispatched generators in the form of supporting prices; that is, the LMP is lower

than the marginal cost of all generators dispatched at their minimum output level, higher than the marginal

cost of generators dispatched to their maximum output level, and equal to the marginal cost of generators

dispatched somewhere in between their minimum and maximum. However, lost opportunity costs may still

arise if the generator can increase its profits by changing to a different commitment period.

Convex hull pricing, proposed by Gribik et al. [11], has the property of minimizing lost opportunity costs.

True convex hull is defined by minimizing the duality gap of the the Lagrangian relaxation of (7) [11], but it

must be approximated for its practical application [26]. The rCHPs and aCHPs may differ from the system

marginal cost as calculated by the LMP model (8). While the often-cited property of convex hull pricing

is minimization of uplift payments defined by lost opportunity costs, minimization of lost opportunity costs

itself may be an important aspect of auction design. Minimization of lost opportunity costs may encourage

truthful cost revelation from market participants [16]. In contrast, restricting the relaxation to committed

resources, as in the rCHP model, is almost entirely motivated by the reduction in uplift payments, and the

relation to auction design principles is less clear.

Dispatch incentives can support the ISO’s schedule either through lost opportunity cost payments or

by assessing penalties, but a preferred approach is difficult to determine. Lost opportunity cost payments

provide an additional mechanism for participants to influence the revenue they receive from the ISO and

therefore additional gaming opportuities. A generator may be able to anticipate when it will be dispatched

down to accommodate an inflexible fast-start that sets the price. The generator may then, with market

power, lower its offer cost to inflate the amount of its lost-opportunity cost payment. To avoid this, an

alternative approach is to assess penalties to generators that deviate from the ISO’s dispatch instructions.

For example, a generator will have incentive to increase its dispatch if it is dispatched below its maximum

despite its marginal cost being less than the current price, but might be penalized for doing so. ISO-NE’s

Chief Economist points out that a penalty approach could result in participants offering less flexibility to the

market by self-scheduling more frequently or submitting a higher minimum output constraint, thereby forcing

the market to dispatch them at inefficient levels [38]. Participants may attempt to avoid lost opportunity

costs by one means or another, so the potential for strategic or uneconomic behavior must be considered.

Standard practice in ISOs is not currently to pay a generator’s full lost opportunity costs, but only to

guarantee that each generator’s revenues cover its as-bid costs. This “make-whole” payment, MWPg, is

defined as follows.

MWP ∗g = [−π∗g ]+ (13)

The make-whole payment is equal to the increase in linear profit if the generator is more profitable by

producing nothing. Since producing nothing is a feasible solution to (12), MWPg ≤ LOCg. All financial

outcomes (profits) in this paper will include make-whole payments in addition to the linear profits defined

by the LMP, rCHP, or aCHP models. Actual profits will be distinguished from linear profit with a tilde.

π̃∗g = π∗g +MWP ∗g (14)
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3 Results

The unit commitment and pricing models are applied to a test case based on an August 2009 snapshot of the

PJM generation fleet with 1,011 generators and fixed demands for 24 time periods [14]. The formulations

were modified from [39] and solved in GAMS with CPLEX 12.5 on a personal laptop with a 2.30 GHz Intel

Core i5-6200U CPU with 8 GB RAM. Table 1 summarizes attributes of the unit commitment model and

Figure 1 summarizes the resulting optimal solution.

Table 1: Test Case Attributes

Time Periods (hours) 24
Generators 1,011
Capacity (GW) 181.2
Peak Load (GW) 93.8
Energy Demand (GWh) 1,833
Variables 121,321
Binary Variables 72,792
Constraints 291,211
Non-Zeroes 1,115,738
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Figure 1: Solution Summary for 24-hour Unit Commitment Problem

The model was solved to complete optimality before filling a solution pool with 100 total integer solutions

within a 0.1% optimality gap of the optimal solution, the same tolerance used by MISO [29], by specifying

CPLEX options to emphasize and save integer solutions (SolnPool, SolnPoolGap=0.001, SolnPoolPop

2, SolnPoolIntensity=4).2 The cost and optimality gap of each solution is provided in Table 2, ordered

by descending optimality gap. Solutions 1-11 constitute the original branch-and-bound tree, denoted by an

asterisk (*). Solutions 12-100 were found after the optimal solution. Solution 19 is an additional, alternative

optimal solution. Although each solution is unique, many only contain a few minor differences because no

diversity filter was used to determine which suboptimal solutions to include in the solution pool. That is,

2Default tolerances were also reduced due to the tight UC formulation (CPLEX options epopt 1e-009, eprhs 1e-009).
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solutions 12-100 were merely found by continuing to explore the branch-and-bound tree and may not be

representative of all solutions that are within 0.1% of the optimal solution.

In practice, ISOs solve their unit commitment problems within a predetermined MIP gap and not to full

optimality. Thus, any solution in Table 2 would be a valid scheduling outcome if the ISO’s software uses

a 0.1% MIP gap stopping criteria. This paper differentiates the “optimality” gap that is calculated with

respect to the true optimal solution (and shown in Table 2) with the “MIP” gap that is calculated during

the branch-and-bound algorithm with respect to the best lower bound. The ISO’s predetermined MIP gap

tolerance is an upper bound to their actual optimality gap. The UC solution results show that the first

integer solution is already close to optimal with a 0.023% MIP gap based on the lower bound found at the

root node, and is within 0.018% of the true optimal solution.

3.1 Energy Payments and Side Payments

Summary statistics for total and individual make-whole payments and lost opportunity costs are shown in

Table 3. Lost opportunity costs LOCg are split into “on-line” if the generator is scheduled for at least one

time period, or into “off-line” otherwise. Make-whole payments are only paid to scheduled units, so no

distinction is made.

The aCHP model reduces total make-whole payments by about 50% compared to LMP. About the same

number of participants receive make-whole payments given either pricing model, but the average individual

make-whole payment is about half for aCHP compared to LMP. Despite this average behavior, LMP-based

make-whole payments showed high variance and were actually lower than the aCHP make-whole payments

in the majority of solutions. Decreasing the optimality gap generally corresponds to lowering the total LMP-

based make-whole payments, albeit non-monotonically. The aCHP-based make-whole payments also behave

non-monotonically but showed significantly less variance. Total lost opportunity cost for aCHP was the only

price support to decrease monotonically with respect to the optimality gap.

The rCHP model raises prices enough to nearly eliminate the need for make-whole payments. However,

higher prices lead to significantly higher lost opportunity costs (on-line and off-line) compared to the other

two pricing models. A market design based on rCHP would therefore require additional mechanisms to

address potential loss of market efficiency.

The aCHP model reduces total lost opportunity costs by about 25% compared to LMP. Although the

aCHP model resulted in lower make-whole payments on average, it only resulted in lower make-whole pay-

ments in 19 of the 100 solutions. In other words, LMP often resulted in lower make-whole payments but also

had a handful of solutions that required very high make-whole payments. Both models allocate about the

same amount of lost opportunity costs to on-line units, but the difference is that the aCHP model allocates

almost no lost opportunity costs to off-line units. That is, LMP and aCHP provide quantitatively similar

incentives for scheduled resources while the aCHP model provides less incentive for unscheduled resources

to self-commit. Lower offline lost opportunity costs may also help to avoid the type of unnecessary disputes

described in [29], about whether a resource is “in-the-money”.

Results also show that lost opportunity cost payments would vastly outstrip payments under the tra-

ditional make-whole payment scheme. This casts doubt into the practicality of adopting lost opportunity

cost payments into a market design, or at least suggests that additional consideration be paid to the lost

opportunity cost calculation. The calculation given by (12) would entitle over 40% of the market to some

10



Table 2: Unit Commitment Solutions

Soln. Cost (k$) Gap (k$ / %) Soln. Cost (k$) Gap (k$ / %)

27 29,517 28.324 0.0961% 87 29,489 0.575 0.0020%
26 29,517 28.315 0.0960% 100 29,489 0.556 0.0019%
90 29,512 23.078 0.0783% 76 29,489 0.544 0.0018%
79 29,504 15.671 0.0531% 82 29,489 0.528 0.0018%
85 29,504 15.626 0.0530% 37 29,489 0.487 0.0017%
78 29,503 14.432 0.0489% 75 29,489 0.455 0.0015%
84 29,503 14.387 0.0488% 61 29,489 0.449 0.0015%
47 29,502 13.599 0.0461% 81 29,489 0.438 0.0015%
53 29,502 13.092 0.0444% 28 29,489 0.413 0.0014%
88 29,501 12.668 0.0430% 74 29,489 0.401 0.0014%
29 29,500 11.431 0.0388% 57 29,489 0.385 0.0013%
99 29,498 9.426 0.0320% 80 29,489 0.385 0.0013%
46 29,494 5.952 0.0202% 66 29,489 0.371 0.0013%
45 29,494 5.604 0.0190% 93 29,489 0.371 0.0013%
*1 29,494 5.405 0.0183% 73 29,489 0.353 0.0012%
44 29,494 5.340 0.0181% 50 29,489 0.349 0.0012%
43 29,494 5.307 0.0180% 72 29,489 0.337 0.0011%
42 29,494 5.288 0.0179% 56 29,489 0.306 0.0010%
41 29,493 4.648 0.0158% 65 29,489 0.300 0.0010%
32 29,492 3.855 0.0131% 55 29,489 0.292 0.0010%
98 29,492 3.335 0.0113% 92 29,489 0.288 0.0010%
97 29,492 3.062 0.0104% 64 29,489 0.284 0.0010%
30 29,491 2.989 0.0101% 21 29,489 0.283 0.0010%
96 29,491 2.790 0.0095% 49 29,489 0.278 0.0009%
59 29,491 2.637 0.0089% 24 29,489 0.157 0.0005%
95 29,491 2.623 0.0089% 69 29,489 0.142 0.0005%
40 29,491 2.248 0.0076% 70 29,489 0.135 0.0005%
77 29,490 1.999 0.0068% 71 29,489 0.128 0.0004%
83 29,490 1.982 0.0067% 36 29,489 0.113 0.0004%
58 29,490 1.863 0.0063% 35 29,489 0.113 0.0004%
94 29,490 1.848 0.0063% 22 29,489 0.094 0.0003%
33 29,490 1.845 0.0063% 31 29,489 0.079 0.0003%
60 29,490 1.783 0.0060% 14 29,489 0.059 0.0002%
89 29,490 1.529 0.0052% *6 29,489 0.059 0.0002%
23 29,490 1.469 0.0050% 34 29,488 0.041 0.0001%
68 29,490 1.404 0.0048% 15 29,488 0.036 0.0001%
52 29,490 1.382 0.0047% *7 29,488 0.036 0.0001%
62 29,490 1.083 0.0037% 16 29,488 0.033 0.0001%
*2 29,489 0.940 0.0032% *8 29,488 0.033 0.0001%
12 29,489 0.940 0.0032% 17 29,488 0.023 <0.0001%
*4 29,489 0.940 0.0032% *9 29,488 0.023 <0.0001%
39 29,489 0.801 0.0027% 54 29,488 0.023 <0.0001%
25 29,489 0.786 0.0027% 91 29,488 0.019 <0.0001%
*3 29,489 0.762 0.0026% 63 29,488 0.015 <0.0001%
86 29,489 0.758 0.0026% 20 29,488 0.014 <0.0001%
13 29,489 0.752 0.0025% *10 29,488 0.011 <0.0001%
*5 29,489 0.752 0.0025% 18 29,488 0.011 <0.0001%
38 29,489 0.635 0.0022% 48 29,488 0.009 <0.0001%
67 29,489 0.630 0.0021% *11 29,488 - -
51 29,489 0.608 0.0021% 19 29,488 - -

11



Table 3: Price Support Statistics

Payment LMP rCHP aCHP

Market Total MWP 17.51 0.16 9.05
Mean (k$) LOC (total) 28.57 468.74 21.34

LOC (on-line) 22.25 87.73 21.20
LOC (off-line) 6.32 381.01 0.14

Market Total MWP 47.3 0.68 2.96
Std. Dev. (k$) LOC (total) 51.61 124.15 5.68

LOC (on-line) 50.77 18.04 5.68
LOC (off-line) 14.86 108.65 0.03

Market Total MWP 2.70 4.25 0.33
c.v. LOC (total) 1.81 0.26 0.27

LOC (on-line) 2.28 0.21 0.27
LOC (off-line) 2.35 0.29 0.21

Individual MWP 2.7% 0.2% 3.0%
% Receiving LOC (total) 12.9% 59.9% 43.4%

LOC (on-line) 10.9% 47.7% 43.1%
LOC (off-line) 2.0% 12.2% 0.3%

Individual MWP $2,010 $207 $956
Mean ($) LOC (total) $697 $2,460 $155

LOC (on-line) $644 $578 $155
LOC (off-line) $978 $9,805 $148

Table 4: Energy Payments (k$)

Optimal Mean [ max , min ] Range c.v.

LMP 53,200 53,011 [ 55,869 , 48,171 ] 7,698 2.61%
rCHP 57,800 57,860 [ 60,726 , 55,545 ] 5,181 1.19%
aCHP 53,661 53,661 [ 53,661 , 53,661 ] 0 0.00%

kind of side payment if the aCHP price is adopted, so a more restrictive calculation may be more reasonable.

3.2 Price Deviations

Total energy payments, exclusive of make-whole payments, are summarized in Table 4. These results show

that the rCHP model led to a 9% increase in energy costs, or about $4.6 million. By contrast, the rCHP

model’s reduction in make-whole payments is no more than $300,000 in any LMP solution. The aCHP model

resulted in similar total energy payments to the average LMP results. However, the LMP results showed

high variance, replicating the results in [12] and [13]. Similar behavior is shown for the rCHP model, which

has not been previously noted in the literature.

Prices for the optimal UC solution are shown in Fig. 2a, and for all 100 solutions in Figs. 2b-2d. Changes

to the LMP price vector shown in Fig. 2b lead to a $7.7 million range of total energy payments, or about

25% of the system cost. For rCHP, the price vectors in Fig. 2c lead to a range of $5.2 million, or about 17%

of the system cost. The aCHP model formulation (10) has no dependence on w∗gt and therefore results in

the same price for all solutions and no change in total energy payments in Table 4.

There were two main qualitative differences apparent when applying the three pricing models to the

12
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(e) LMP vs. Optimality Gap
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(f) rCHP vs. Optimality Gap

Figure 2: Hourly prices (2a)-(2d) and deviation range per integer solution (2e),(2f)
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optimal solution, shown in Fig. 2a. The LMP model results in lower prices during the early morning hours

4am-7am, and the rCHP model results in higher prices during ramp-up and ramp-down periods, roughly

1pm and 10pm. We note that some LMP solutions also display 1pm and 10pm price spikes, although this

does not occur in the optimal solution. Although the aCHP model results in prices that are qualitatively

more “moderate” than LMP or rCHP, the aCHP prices are not necessarily within the range of either LMP

or rCHP prices.

Figs. 2e and 2f show the largest price deviations for LMPs and rCHPs compared the LMPs and rCHPs

of the optimal solution, respectively. The price deviations are nonmontonic with the level of suboptimality,

showing significant deviations even in solutions which have very small optimality gaps. In addition to the

worst-case price deviations shown in Figs. 2e and 2f, the mean average percent deviations3 (MAPE) for

LMP, rCHP, and aCHP were 2.48%, 1.37% and 0%, respectively, when averaged across all 98 suboptimal

solutions.4 Like the deviation ranges, the MAPEs for each pricing model are nonmonotonic and not strongly

related to the size of the optimality gap.

Lastly, note that price deviations are not obviously related to the narrowing optimality gap. LMPs show

significant price deviations even in solutions which have very small optimality gaps (e.g., < 0.005%). Like

the make-whole payments before, this price deviation behavior is nonmonotonic and erratic.

3.3 Wealth Transfers Among Market Participants

Each near-optimal solution entails a series of wealth transfers between participants compared to financial

outcomes in the optimal solution. The optimality gap represents a deadweight loss which removes market

surplus without allocating it to another market participant. Changes to prices, commitment decisions, and

make-whole payments result in additional wealth transfers. The transfers are related by the balance equation

below.

z(s) − z∗ = DW Loss(s) = ∆EnergyCost(s) + ∆UpliftCost(s) −∆GenProfits(s) (15)

These values are calculated for a specified price vector λ
(s)
t (LMP, rCHP, or aCHP) in solution s, with

associated make-whole payments MWP
(s)
g , linear profits π

(s)
g , and total cost z(s). Each component of (15)

is defined and further subdivided below to accurately account for wealth transfers.

∆EnergyCost(s) =
∑
t

(
λ
(s)
t − λ∗t

)
Dt where

Lower ECost(s) = [∆EnergyCost(s)]−

Higher ECost(s) = [∆EnergyCost(s)]+
(16)

∆UpliftCost(s) =
∑
g

(
MWP (s)

g −MWP ∗g

)
where

Lower Uplift(s) = [∆UpliftCost(s)]−

Higher Uplift(s) = [∆UpliftCost(s)]+
(17)

∆GenProfits(s) =
∑
g

(
π̃(s)
g − π̃∗g

)
where

Gen. Gains(s) =
∑
g[π̃

(s)
g − π̃∗g ]+

Gen. Losses(s) =
∑
g[π̃

(s)
g − π̃∗g ]−

(18)

The net change in consumer surplus is ∆EnergyCost(s) + ∆UpliftCost(s), and the net change in producer

surplus is ∆GenProfits(s).

3Average percent deviation of all 24 hourly prices (LMP or rCHP) compared to the respective prices in the optimal UC

solution.
4Solutions 11 and 19 were both optimal and resulted in the same LMPs and rCHPs.
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(c) aCHP transfers vs. integer solutions
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(d) aCHP transfers vs. integer solutions, detail

Figure 3: Inter-solution wealth transfers

Fig. 3 shows each of these inter-solution wealth transfers relative to settlements in the optimal solution

for each pricing model. From Figs. 3a-3c, it can be seen that the LMP and rCHP pricing models create very

large wealth transfers, often 3-4% of the system cost, while aCHP has comparatively much smaller wealth

transfers. The majority of transfers for LMP and rCHP are simply between consumers and generators as a

result of price deviations.

The majority of transfers for LMP and rCHP are simply between consumers and generators as a result

of price deviations. Table 5 compares solution 23 with solution 11 (i.e., the optimal solution) to exhibit

typical transfers between generators with the LMP pricing model. Generators 102, 154, 816, 902 and 912

are a subset of the nine total generators whose commitment status has changed in any period between the

two solutions. This is not shown due to space limitations, but generator 120 is only dispatched during

hours 11-23 in the solution 11 and all 24 hours in solution 23. Low prices in the early morning hours do

not cover it’s additional operating costs in solution 24, so the sub-optimal solution reduces generator 102’s

profits by $496. Generator 154, which is not part of the optimal solution, is dispatched during hour 18 in

solution 23 and earns a profit of $187. The remaining generators 816, 902, and 912 are each committed for

an additional hour in solution 23 and earn additional profits of $138, $786, and $148, respectively. These

individual changes in profit are less than the optimality gap of $1469, and are overshadowed by much larger

wealth transfers caused by the change in prices.

In contrast, Fig. 3d shows that the aCHP wealth transfers occur primarily among generators. Unlike

results for LMP and rCHP, these transfers for aCHP pricing are typically around the same order of magnitude

as the optimality gap, and in fact, the optimality gap is the dominant source of wealth transfers in the most

costly solutions.
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Table 5: Generator Commitment and LMP Settlement Changes in Solutions 11 and 23

Hour (Dispatch in MWh, LMP in $/MWh)

Gen 13 14 15 16 17 18 19 20 21 Profit

S
o
ln

.
1
1

102 120 120 120 127 127 127 127 120 120 $10,497
154 $0
816 30 44 44 44 30 $2,035
902 94 154 223 223 223 172 94 $9,822
912 30 44 30 $633

LMP $32.01 $34.19 $32.53 $43.04 $46.74 $59.42 $40.44 $32.53 $33.65

S
o
ln

.
23

102 126 126 120 127 127 127 127 120 120 $10,001
154 45 $187
816 30 30 44 44 44 44 30 $2,173
902 94 154 223 223 223 223 145 94 $10,608
912 30 44 44 30 $782

LMP $34.20 $34.20 $33.19 $43.04 $46.74 $62.58 $40.77 $32.20 $33.39
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Figure 4: Aggregate c.v. by Generator Characteristics

Wealth transfers are not distributed randomly among market participants. Fig. 4 shows aggregate

coefficient of variance (c.v.) of individual generator profits. Fig. 4a groups generators by profitability

quartiles and Fig. 4b by capacity quartiles. Individual generator c.v. statistics are aggregated for each

quartile using the root-mean square (RMS).

c.v.(Q, ?) =

√∑
g∈Q(σ?g)2∑
g∈Q µ

?
g

, Q ⊂ G , ? ∈ {LMP, rCHP, aCHP} (19)

High c.v. values imply that generator profits are highly sensitive to the particular unit commitment

solution and pricing model. Generators with lower profits could be expected to have a high c.v. simply due

to lowering the c.v.’s denominator, and this is exactly what is shown for LMP and rCHP in Figure 4a. In

comparison, aCHP’s c.v. remained low even among the least profitable generators.

Near-optimal unit commitment solutions pose some risk for small resources that may remain unscheduled

by the ISO merely because their benefits to the system are smaller than the size of the optimality gap. Results

in Figure 4b show that this problem is exacerbated when using rCHP. Profit variances for LMP are actually

largest for resources in the second capacity quartile. The variance in profits for aCHP remained low regardless

of generator capacity.
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4 Conclusion

It has long been recognized that sub-optimal solutions can have significant distributional implications in

markets with nonconvexities [12, 13]. What hasn’t been explored is whether those implications are very

different under the various pricing systems that have been proposed as alternatives to the traditional LMP.

This paper is the first to compare pricing and income distribution outcomes of near-optimal unit commitment

solutions for two alternative practical approximations of convex hull pricing.

One model, which we call aCHP, is a convex primal formulation that approximates convex hull pricing

by relaxing all binary constraints regardless of the UC solution. The main result in this paper is that the

aCHP model results in de minimus wealth transfers among near-optimal UC solutions. Traditional LMP

pricing models do not possess this property. Small wealth transfers and the lower lost opportunity costs

among participants may help reduce strategic opportunities for generators to self-schedule or self-commit

and avoid unnecessary disputes about the ISO’s schedule.

The relative stability of aCHP model’s financial outcomes therefore appear to diminish incentives for

gaming, which may yield some modest efficiency gains in the day-ahead electricity market. Due to the

size of wholesale electricity markets, even efficiency gains that are less than 1% of total production costs

could be significant in the absolute amount of savings. The small relative savings and the computational

complexity involved in analyzing bidder behavior make it difficult to determine the magnitude of the possible

efficiency gains in a realistic test case. Thus, whether newly proposed electricity pricing methodologies should

be adopted remains an open question. Improved computational or empirical5 approaches to perform such

analysis may be a valuable area for future work.

Appendix

A Examples of Self-Commitment Equilibrium

Optimal self-commitment decisions for nonconvex generators are analyzed in the following two examples.

The following will be assumed: (1) the nonconvex generators are block loaded, so that, if committed, then

its minimum operating level is equal to its maximum operating level, (2) further, there is no distinction

between self-scheduling and self-committing, (3) generators are only able to behave strategically only with

respect to their decision to self-commit, in which case they offer to the market at zero cost and forego the

possibility of receiving any make-whole payment, and (4) all generators are owned separately. If a generator

does not self-commit, then it is assumed that it will offer its true costs.

The first example looks at a market with fixed demand and three generators with distinct costs and

production capabilities. Price dynamics of LMP ensure that self-scheduling is not part of any generator’s

optimal strategy. The second example creates a replicated economy by including five of each generator

type and multiplying demand by five. Growing the market in this way creates opportunity for generators to

strategically self-commit. The behavior can be characterized in a mixed-strategy Bayesian Nash equilibrium.

5An anonymous referee pointed out that the implementation of the new Integrated Single Electricity Market (I-SEM) in

Ireland may provide a natural experiment concerning the effect of alternative market structures on the bidding of commitment

and other costs.
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A.1 Simple Example

Demand and generator characteristics for the first example are provided in Table 6, and its only two feasible

integer solutions are provided in Table 7. The three generator types are: Gen1, Gen2, and Gen3. Gen1 is

nonconvex due to being block loaded, while Gen2 and Gen3 are convex generators with simple linear cost

curves. A small increment ε is added to demand to avoid issues with degeneracy as well as to make easier

identification of the price-setting generator. However, this ε will be ignored when calculating costs.

Table 6: Simple Market Characteristics, Single Period

Resource Parameters Min. Qty. Max. Qty. Cost

Gen1 Start-up, x1 0 1 $0
Gen1 Output, p1 25x1 25x1 $15p1
Gen2 Output, p2 0 25 $10p2
Gen3 Output, p3 0 25 $25p3
Demand, D 45 + ε 45 + ε N/A

Table 7: Simple Market Optimal Schedules

Solution: Gen1 Startup, x1 = 1 Gen1 Startup, x1 = 0

Gen1 Output, p1 20+ε MWh 0 MWh
Gen2 Output, p2 25 MWh 25 MWh
Gen3 Output, p3 0 MWh 20+ε MWh

Gen1 Cost $320 $0
Gen2 Cost $250 $250
Gen3 Cost $0 $500

Total Cost, z $570 $750
LMP, λ $10/MWh $25/MWh

Table 7 shows that this market has two integer solutions. In the first solution, Gen1 is started, sets the

LMP and requires a $100 make-whole payment to cover its start-up costs. In the second solution, Gen1 is

not started but is replaced by Gen3, which sets the LMP at $25/MWh and does not require a make-whole

payment. The first solution is optimal. The second solution is suboptimal and Gen1 sees that it would have

been profitable at a price of $25/MWh, resulting in a lost opportunity cost of (25-11)25-100 = $250.

Because of the focus on self-commitment, it will be assumed that the possibility for strategic behavior

only exists for Gen1. Gen2 and Gen3 are convex and are therefore less likely to self-commit or self-schedule.

If the first solution is selected, no generator is able to improve its profits at the given price, so there is no

incentive to self-schedule. If the second solution is selected (erroneously) by the ISO, Gen1 could conceivably

self-schedule to 20 MW. This would keep the price at $25/MWh but would be physically infeasible for the

block-loaded generator. If Gen1 self-commits its entire 25 MW, then the price would fall to $10/MWh, the

marginal cost of Gen2, and Gen1 would not be eligible to receive a make-whole payment to cover its losses.

Thus, there is no optimal decision to self-schedule in the small market given by Table 6.
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A.2 Replicated Example

Demand and generator characteristics for the replicated economy are provided in Table 8. Replicated gener-

ators are denoted by n ∈ {1, . . . , 5}. Assuming truthful marginal cost offers, optimal schedules are provided

in Table 9 with explicit reference to the number of Gen1s that self-commit, given by N .

Table 8: Replicated Market Characteristics, Single Period

Resource Parameters
n ∈ {1, . . . , 5} Min. Qty. Max. Qty. Cost

Gen1 Start-up, x1(n) 0 1 $0
Gen1 Output, p1(n) 25x1(n) 25x1(n) $15p1(n)
Gen2 Output, p2(n) 0 25 $10p2(n)
Gen3 Output, p3(n) 0 25 $25p3(n)
Demand D 225 + ε 225 + ε N/A

Table 9: Replicated Market Optimal Schedules

Gen1 Self-Commits N < 5 N = 5

Gen1 Start-ups,
∑
n x1(n) 4 5

Gen1 Output,
∑
n p1(n) 100 MW 125 MW

Gen2 Output,
∑
n p2(n) 125 MW 100 + ε MW

Gen3 Output,
∑
n p3(n) ε MW 0 MW

Gen1 Cost as Offered $375(4-N) $0
Gen2 Cost as Offered $1250 $1000
Gen3 Cost as Offered $0 $0

Obj. Cost, z $(2750− 375N) $1000
Actual Cost, ẑ $2750 $2875
LMP, λ $25/MWh $10/MWh

The optimal unit commitment is simple enough to solve by hand. Self-committed units are considered

“free” to the ISO’s scheduling software and are each scheduled to their maximum output. When N < 5,

Gen2s are dispatched to full capacity and four Gen1s are committed. The last ε demand is cheaper to serve

with Gen3 than committing the last Gen1 and dispatching down a Gen2 by 25− ε. When N = 5, all Gen1s

are committed and the Gen2s are collectively dispatched to 100 + ε, less than their aggregate capacity.

The market described in Table 8 has five socially optimal solutions: each which entails not scheduling

one Gen1 but scheduling the other four Gen1s to their maximum output. Of the five Gen1s in the market,

only four can be part of the socially optimal solution. Therefore, we will assume that there is a probability

of (4−N)/(5−N) that a Gen1 is not selected, given N ∈ {0, . . . , 4}. The market has an LMP of $25/MWh

when N < 5 or $10/MWh if N = 5. Moving from one optimal solution to the other creates a $250 wealth

transfer from the decommitted Gen1 to the newly committed Gen1 and results in a $250 lost opportunity

cost for the now decommitted Gen1.

It is profitable for Gen1 to self-commit in the replicated market, and this behavior can be described in a

mixed strategy Nash equilibrium. Each Gen1’s expected profit depends on two things: (1) its own decision to

self-commit (no-SC or SC), and (2) the total number of Gen1s that are self-committed (N = {0, 1, 2, 3, 4, 5}).
A Gen1 strategy is defined as the probability that the generator decides to self-commit and is denoted α1.
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Table 10: Expected Profits Given Self-Scheduling Decisions

Event, ω ∈ Ω Pr(ω) E[π1(n)|ω]

no-SC, N = 0 (1− α1)× (1− α)4 $200.00
no-SC, N = 1 (1− α1)× 4(1− α)3α $187.50
no-SC, N = 2 (1− α1)× 6(1− α)2α2 $166.67
no-SC, N = 3 (1− α1)× 4(1− α)α3 $125.00
no-SC, N = 4 (1− α1)× α4 $0.00
SC, N < 5 α1 × (1− α4) $250.00
SC, N = 5 α1 × α4 -$125.00

Each Gen1 has identical characteristics to the other Gen1s, so it can be assumed that the other Gen1s all

choose the same mixed strategy α. We maintain a distinction between α1 and α to emphasize that the

Gen1s are competing and thus do not coordinate their strategies (i.e. collude). The expected profits for

each combination of events is given in Table 10. Note that “no-SC” and “N = 5” are mutually exclusive

because N = 5 entails self-scheduling each Gen1. The probabilities in Table 10 are given by the binomial

distribution and result in the following expected profit function.

E[π1|Ω] = (1− α1)
[
200(1− α)4 + 750(1− α)3α+ 1000(1− α)2α2 + 500(1− α)α3

]
+ α1

[
250(1− α4)− 125α4

]
The first order condition for E[π1|ω] with respect to α1 is,

∂E[π1]

∂α1
=− 200(1− α)4 − 750(1− α)3α− 1000(1− α)2α2 − 500(1− α)α3 + 250(1− α4)− 125α4 = 0

Solving the fourth-order polynomial results in two real solutions and two imaginary solutions. The only

valid solution to the first order condition is α = 0.831. The other real solution is α = −0.548 and can be

disregarded along with the imaginary solutions since they are outside the possible range of α, from 0 to 1. The

Gen1 strategies are assumed symmetrical, so we also have α1 = 0.831. The expected profit at equilibrium is

E[π1|α = 0.831] = $71.53, less than half of the optimal coordinated (collusive) strategy E[π1|α = 0] = $200.

There is no incentive to deviate when each Gen1 chooses this strategy since E[π1|no-SS, α = 0.831] =

E[π1|SS, α = 0.831] = $71.53.

If we suppose all other Gen1s choose the strategy α = 0, then a strategic Gen1’s will choose α1 = 1

and will increase expected profits from $200 to $250. Thus, this strategy is not a Nash equilibrium. On the

other hand, considering the strategies α1 = 0 and α = 1 reveals an asymmetric Nash equilibrium. Since

the generator with strategy α1 = 0 is arbitrary, this represents five asymmetric equilibria in addition to

the mixed strategy equilibrium. While these alternative equilibria satisfy the Nash criteria, they may be

unsustainable if the Gen1 with α1 = 0 can anticipate a change in its competitor’s strategies after it begins a

new strategy α1 > 0. Additional asymmetric equilibria are also possible but will be ignored in this example.

Finally, consider the market outcome if the ISO calculates the convex hull price (CHP) instead of the

LMP. Instead of $25/MWh, the CHP is set by a partial commitment of an uncommitted Gen1. Relaxing

x1 sets the price at $15/MWh. The Gen1s break even at this price and therefore have no self-scheduling

incentives, so we will assume N = 0 and the ISO selects the socially efficient schedule. The price is higher

than the marginal cost of Gen2, which is dispatched to its maximum, and lower than the marginal cost of

Gen3, which is only dispatched to ε. The make-whole payment required by Gen3 is negligible.
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Market efficiency implications are summarized in Table 11. The only event that causes a suboptimal

schedule is if all 5 Gen1s self-commit, given by the probability Pr(N = 5). System costs are taken from

Table 9: $2750 if the schedule is efficient (N < 5) and $2789.53 if all Gen1s self-commit (N = 5). Similarly,

prices are $25/MWh (if N < 5) and $10/MWh (if N = 5). In the replicated market example there is a 1.44%

increase in costs and 27.14% increase in price, both in expectation, due to the optimal Gen1 self-commitment

mixed strategy. Since make-whole payments are negligible, the expected cost to consumers also increases by

27.14%.

The self-commitment incentives of non-convex generators reveals the following non-intuitive results:

• Market power can be exercised by becoming a price taker.

• Participants can collude by offering truthfully.

• Marginal cost pricing can result in economic inefficiency.

While these results do not consider strategic marginal cost offers, it is reasonable to assume that doing

so only would make the auction results appear less efficient. Growing the market further, letting n → ∞,

would serve to increase competitive behavior with respect to marginal cost offers. However, strategic self-

commitment behavior would remain due to the presence of uncommitted Gen1s when a Gen3 sets the LMP.

Lost opportunity costs represent the incentive of these uncommitted generators to self-commit, and such

incentives can be lessened by the adoption of convex hull pricing.

Table 11: Efficiency in the Replicated Market

Price model Pr(N < 5) Pr(N = 5) Cost, E[ẑ] Price, E[λ]

LMP 0.395 0.605 $2789.53 $19.07/MWh
CHP 1.000 0.000 $2750.00 $15.00/MWh

Diff. (%) 1.44% 27.14%
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