The political economy of a carbon price floor for power generation

Robert A. Ritz
Assistant Director, Energy Policy Research Group (EPRG)
Judge Business School, University of Cambridge
r.ritz@jbs.cam.ac.uk

Based on joint work with David Newbery & David Reiner

European Policy Centre – Expert Roundtable
Brussels, 5 November 2018
Conclusions: The role for a carbon price floor

① Good case for CPF as practical hybrid ETS design
 ▪ Supported by recent international policy experience

② EU-wide power CPF = “low regret” policy
 ▪ Address risk of too low EUA price & missing market
 ▪ Useful insurance even if other ETS reforms gain pace

③ National power CPF = “ambitious” policy
 ▪ Support national climate commitment & avoid lock-in
 ▪ Trade-off: Feasibility vs intra-EU trade distortions
 ▪ Value enhanced by new Market Stability Reserve

④ Dynamic towards regional CPF?
 ▪ Potential CPF coalition building on GB & Dutch policy...
Rationale: A CPF for the EU electricity sector

Economics of *instrument choice* under uncertainty

- **Hybrid design** combining price & quantity does better than tax (which does better than quota)
 - Unless close to climate “tipping point”…

⇒ **CPF = practical implementation of hybrid design within existing EU ETS framework**

EU carbon price is then differentiated across sectors

- Power sector faces higher carbon price than other ETS
 ⇔ traded sectors get “discount”

Why? Carbon leakage + no corrective trade tariffs

Electricity needs to decarbonize more quickly
International policy experience with CPFs

<table>
<thead>
<tr>
<th>Full sectoral coverage</th>
<th>Multi-sector ETS</th>
<th>Power-only ETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>California (WCI)</td>
<td>Floor: Reserve price $10 (2012) $\text{infl'}n + 5% \text{ p.a.}$</td>
<td>Regional Greenhouse Gas Initiative (RGGI) Corridor: Reserve price $6–13$ (2021) $+7% \text{ p.a.}$</td>
</tr>
<tr>
<td>Canada</td>
<td>Floor: Top up levy C$10 (2018) + $10/\text{year}$</td>
<td>\n/A</td>
</tr>
<tr>
<td>Beijing pilot</td>
<td>Corridor: Permit buybacks CNY 20–150</td>
<td>\n/A</td>
</tr>
<tr>
<td>Great Britain</td>
<td>Floor: Top up levy \n/A</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>Floor: Top up levy</td>
<td>\n/A</td>
</tr>
<tr>
<td>(planned)</td>
<td>\n/A</td>
<td></td>
</tr>
</tbody>
</table>

www.eprg.group.cam.ac.uk
Policy recommendation: CPF design

- **Level:** Starting at €25–30/tCO₂
- **Trajectory:** Inflation plus 3–5% increase p.a.
- **Duration:** At least up to 2030
- **Design:** Top up levy for electricity generation

✓ Design based on inducing **coal-to-gas switching**
 - Coal-to-gas switching level may differ across countries

✓ More practical than **social cost of carbon** (SCC) or “target-consistent” carbon prices
Policy interactions: CPF & MSR

National CPF reduces domestic carbon emissions

ETS benchmark result
Fixed & binding ETS cap: zero EU-wide emissions cut due to "waterbed effect"
⇒ Climate benefit requires national EUA cancellation

New EU ETS Market Stability Reserve
MSR to fill up (2019–) & cancel surplus EUAs (2023–)
- **Medium-term**: Waterbed reduced by ~50–80%
- **Post-2030**: Waterbed re-emerges…

⇒ New MSR design enhances value of national CPF
EPRG Research project + Op-eds

Research project
David Newbery, David Reiner & Robert Ritz:

When is a carbon price floor desirable?
EPRG Working Paper 1816, June 2018
https://www.eprg.group.cam.ac.uk/eprg-working-paper-1816/

A carbon price floor for power generation to reaffirm EU climate leadership
EPRG Policy Brief, June 2018

Financial support from Iberdrola is gratefully acknowledged.
All views expressed and any errors are those of the authors.

Opinion pieces
Backup slides
Contribution of this research paper

Desirability & design of a carbon price floor (CPF)

1. International experience with CPFs

2. EU-wide CPF & national CPF
 ⇒ Political economy: Market failure + policy failure

Scope: Electricity sector in Europe (within EU ETS)
 - Minimal concerns about carbon leakage

Premise: Deliver on (unilateral) EU climate targets
Policy background

Ambitious post-Paris **decarbonization** agenda

EU ETS price < target-consistent carbon price
- €25–63/tCO$_2$ (2030), €49–190/tCO$_2$ (2040)
 (European Commission 2011, in 2008 prices)
- EU ETS reform leaves risk of “too low” EUA price

Longer-run carbon price = “**missing market**”

⇒ Growing policy interest in **carbon price floor**
 - National CPF for power: GB, Netherlands
 - EU-wide CPF: France…

 + **proximate** objective of **coal exit** (unabated)
Economic impacts of a EU-wide CPF

① **Fuel switching** from coal to gas & RES
② Higher wholesale **electricity price**
③ **Stronger low-carbon investment incentives**
④ **Lower carbon emissions** from electricity sector
⑤ Additional **tax revenue** (double dividend…)
⑥ **Abatement cost** inefficiency

- Due to unequal sectoral carbon prices
“To support and provide certainty for low carbon investment” (HMT, 2010)

Original policy: £30/tCO₂ (2020) up to £70/tCO₂ (2030)
- Drive £30–40bn (=7.5–9.5GW) new investment…

Current policy: Maximum £18/tCO₂ until 2021…
(added to EUA price)

Impacts: Significant to coal-to-gas (and RE) switching
- Coal share: 41% (2013) down to 8% (2017)
- Rise in wholesale electricity price
- Increase in imports via interconnectors
GB longer-term climate commitment

Avoiding lock-in into unsustainable technologies...
Rationale for & design of national CPF

National CPF supports serious long-term climate target

Trade-off: Greater feasibility than EU-wide agreement versus additional intra-EU trade distortions

Design: Same recommendation as for EU-wide CPF
 ▪ Coal-to-gas switching level may differ across countries

Credibility: Commitment to price trajectory is key
 ▪ GB: Additional emissions performance standard (EPS) to help signal “no new coal”
Thought experiment: Global coal-to-gas switch

Q: How much existing coal-fired power generation can be replaced with existing unused gas generation?

A: Global switching potential ~20% with existing assets

⇒ Annual global carbon emissions fall by ~1 GtCO$_2$

- **Social value**: ~$50 billion per year

<table>
<thead>
<tr>
<th>Top 5</th>
<th>“Gas potential”</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>6%</td>
</tr>
<tr>
<td>US</td>
<td>47%</td>
</tr>
<tr>
<td>India</td>
<td>12%</td>
</tr>
<tr>
<td>Russia</td>
<td>37%</td>
</tr>
<tr>
<td>South Korea</td>
<td>35%</td>
</tr>
</tbody>
</table>

- **European countries**: mostly >100% potential
 - Except: Germany, Czech

- **Zero potential**: Japan, Mexico, Poland, Kazakhstan

Source: Grant Wilson & Staffell (2018), 2015 data
Potential for coal-to-gas switching in power

Current gas capacity could completely displace coal

Insufficient gas capacity available to switch coal to gas

Source: Grant Wilson & Staffell (2018)