Continental Europe
May 2019
Chapter 1
Context: Clean energy package done

Chapter 2
Open issues: Adequacy, System operation

Chapter 3
Implementation: Short term markets

Chapter 4
Congestion management
The Clean Energy Package | European level
Enabling the long-term vision for a climate neutral continent by 2050

The Clean Energy Package

This package is the legal framework necessary to reach ambitious energy and climate commitments (Paris COP21, 2050 EU Climate Strategy) by transitioning towards a greener and modern economy:

WHAT

1. Putting Energy Efficiency First
2. Demonstrating Global Leadership in renewables
3. Delivering a fair deal for consumers

WHY

Energy Efficiency (Energy Efficiency & Buildings)
- -32.5% in 2030 vs PRIMES 2007 (upward clause in 2023)
- Extension of the annual energy saving obligation
- Towards a low and zero-emission building stock in by 2050
- Strengthen long term building renovation strategies
- Supporting ICT and smart technologies

Renewables (Renewable Energy)
- 32% RES Target (upward clause in 2023)
- Establish a framework for self consumption

Market Design (Elec R. & D., ACER, Risk Preparedness, Governance)
- Towards the European Model
- Consumers as active players of the electricity systems
- Stricter and harmonized CRM rules across MS
- ACER: strengthened role & Regulatory Observatory
- Common methods for assessing risks & managing elec. crises

HOW

Legislative Procedure
1. The EC proposes a text.
3. The three entities formally meet under the guidance of the EU Presidency to agree on a common text (trilogue procedure)
4. The EP and the Council have a final vote on the agreed text
5. Publication in the Official Journal (OJ) of the EU
6. National Parliaments have 2y to translate Directives into national law (Regulation directly implemented)

2016
November
The EC set out the Clean Energy Package composed of 5 Directives (D) and 3 Regulations (R):

2018
First Publications in the Official Journal (see procedure below)
June
Energy Performances in Buildings (D)
December
Renewable Energy (32% RES target in 2030) (D)
Energy Efficiency (-32.5% in 2030 vs PRIMES 2007) (D)
Governance of the Energy Union (R)

2019
May (scheduled)
Electricity Regulation
Electricity Directive
Risk Preparedness (D)
ACER (R)

The Council has to approve the political agreement reached
Capacity Outlook: More than 90GW of today’s reliable thermal capacity closed by 2030. Intermittent Wind and PV will double, increasing by more than 140GW.

Policy driven
Nuclear phase-out in DE (end of 2022) and BE (2025)
Nuclear in France according to RTE Ampere Scenario
(63.1 GW today and 46.5 GW in 2030)

Entso-E TYNDP 2018: Decentralized Generation
Capacity installed in EU14 (modelling scope):
- PV 108 (350) GW in 2018 (2030),
- Wind Onshore 133 (191) GW in 2018 (2030),
- Wind Offshore 16 (58) GW in 2018 (2030)

Policy driven
Coal is phased-out in FR (end of 2021), IT (2025), UK (non-CCS, 2025) and NL (2029).
Technical lifetime of 40y in other countries (economic extensions not allowed).

Technical lifetime
Operation of existing assets, based on technical lifetime:
CCGT 20y, GT 20y. A sensitivity is foreseen with economic asset management: lifetime extension, reconversion, brownfield development)

Demand & Peaks
IEA WEO 2017 New Policies Scenario
CAGR 2018-30 : ~0.35% (both for annual and peak load)
Without further incentives to keep existing or to build new reliable capacity, severe adequacy issues appear as of **winter 2022/23**.

Capacity Evolution Existing Thermal & RES - CWE4* [GW]

- More than 90 GW of reliable capacity could be closed between now and 2030

Expected scarcity hours during winter periods [hours/year]

- Severe issues appear in all countries as of winter 2022-23
- Until winter 2021-22, LOLE remains at acceptable levels

* BE, DE, FR, NL
Scarcity events tend to happen simultaneously across countries as of winter 2022-23. Measures have to be taken now.

Germany tends to experience more scarcity events than the neighbours.

Expected number of scarcity hours per week [hours/week]

Lead time to develop new capacity

Designing a mechanism

CASE WITHOUT FURTHER INCENTIVES
The European Target Model
based on a temporal sequence of forward, short term day-ahead and intraday as well as real-time balancing markets.

- **Forward Markets**
 - Zonal
 - Hourly and non-standard products
 - Auction-based (voluntary), next to OTC
 - Market coupling (implicit auctioning of transmission capacity)
 - Flow-based grid representation preferably

- **Day-Ahead Markets**
 - Zonal
 - Hourly, sub-hourly and non-standard products
 - Mainly (voluntary) continuous trading + auctions
 - Transmission capacity mainly on a first-come first-served basis
 - ATC grid representation

- **Intraday Markets**
 - Zonal
 - Hourly, sub-hourly and non-standard products
 - Mainly (voluntary) continuous trading + auctions
 - Transmission capacity mainly on a first-come first-served basis
 - ATC grid representation

- **Balancing Markets**
 - Zonal
 - Hourly, sub-hourly and non-standard products
 - Mainly (voluntary) continuous trading + auctions
 - Transmission capacity mainly on a first-come first-served basis
 - ATC grid representation

- **Risk is hedged**
 - Merchant markets, where units are scheduled decentrally (it’s a residual market because participation is not obligatory as in a Pool)
 - TSO treats residual imbalance by using contracted ancillaries

The simplified grid representation (especially for ATC, but also for Flow-Based) requires countertrading and out-of-market redispatch measures to align with the physical characteristics of the grid.

European market integration
- Started with integrating DAM (market coupling, auction based) and is further implemented at IDM (XBID) and Balancing (e.g. TERRE, PICASSO) level.
- The view is that DAM are the reference, while IDM and Balancing are adjustment markets.
CACM Guidelines – Key requirements for the establishment of single day-ahead and intraday coupling
COMMISSION REGULATION (EU) 2015/1222

- (Preamble 13) Capacity should be allocated in the day-ahead and intraday market time-frames using implicit allocation methods, in particular methods which allocate electricity and capacity together. In the case of single day-ahead coupling, this method should be implicit auction and in the case of single intraday coupling it should be continuous implicit allocation.

- (22) Reliable pricing of transmission capacity should be introduced for the intraday market time-frame, reflecting congestion and (Art.55) shall be based on actual orders.

- (7) There are two permissible approaches when calculating cross-zonal capacity: flow-based or based on coordinated net transmission capacity. The flow-based approach should be used as a primary approach for day-ahead and intraday capacity calculation where cross-zonal capacity between bidding zones is highly interdependent.

- Art. 53, products accommodated: the continuous trading matching algorithm is able to accommodate orders covering one market time unit and multiple market time units - all NEMOs shall consult […] market participants, to ensure that available products reflect their needs.

CONTINUOUS TRADING + EFFICIENT PRICING AND USAGE OF TRANSMISSION CAPACITY = CONTRADICTION?
Continuous trading and “Tâtonnement” do not necessarily lead to the socially optimal intraday dispatch

3-zones setting - Net exchange balances – DAM dispatch with FBMC and Intraday dispatch with auctions (FBMC) or continuous trading (ATC)

1. The DAM clears, taking flow-based market coupling constraints into account.
2. New information on RES, load and plant availabilities imply a modified objective function. The IDM clearing with the same FBMC constraints would deviate from the DAM clearing as a result.
3. The new dispatch can be achieved with auctions, by moving “on the FMBC border"

Can this new dispatch be achieved with bilateral/continuous trade?

4. Condition 1: the CT algorithm updates the ATC box after each trade.
5. Condition 2: trades are beneficial for market participants. This is not true in this example, since social welfare decreases here.
6. Condition 3: the algorithm knows the efficient FBMC dispatch beforehand and does not allocate “too much capacity in the right direction”. Otherwise, trade may never converge.

Legend:
- Flow-based constraints of the day-ahead market
- Objective function DAM
- Objective function IDM
- Optimal dispatch in day-ahead or intraday, according to the flow-based constraints
- ATC constraints, based on the day-ahead flow-based constraints (possibly updated during the intraday CT)
In the meantime, ACER has proposed 3 auctions...

3 auctions:

1. 15:00 D-I: cross-zonal gate-opening time
2. 22:00 D-I: when the first intraday capacity re-calculation is — at least as a first step - expected to be finished
3. 10:00 D: when the second intraday capacity re-calculation is — at least as a first step - expected to be finished

DETECTION No 01/2019
OF THE AGENCY FOR THE COOPERATION OF ENERGY REGULATORS
of 24 January 2019

ESTABLISHING A SINGLE METHODOLOGY FOR PRICING INTRADAY CROSS-ZONAL CAPACITY

THE AGENCY FOR THE COOPERATION OF ENERGY REGULATORS,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Regulation (EC) No 713/2009 of the European Parliament and of the Council of 13 July 2009 establishing an Agency for the Cooperation of Energy Regulators¹ and, in particular, Article 8(1) thereof,

Having regard to Commission Regulation (EU) 2015/1222 of 24 July 2015 establishing a guideline on capacity allocation and congestion management² and, in particular, Article 9(11) thereof,

Having regard to the outcome of the consultation with the concerned regulatory authorities and transmission system operators,

Having regard to the favourable opinion of the Board of Regulators of 23 January 2019, delivered pursuant to Article 15(1) of Regulation (EC) No 713/2009,

Whereas:

1. INTRODUCTION

(1) Commission Regulation (EU) 2015/1222 of 24 July 2015 establishing a guideline on capacity allocation and congestion management (the "CACM Regulation") laid down a range of requirements for cross-zonal capacity allocation and congestion management in the day-ahead and intraday markets in electricity. Chapter 9 of the CACM Regulation
Bidding zones are large and often national. Requiring:

- Calculation of cross zonal available capacity

- Intra-zonal redispatch → potentially reserve capacity for re-dispatching

- Avoid discrimination between internal and cross zonal flows → until now some preference to internal flows. The new regulation article 13 and 14 aim to change this by introducing a minimum available capacity for cross border trade.

- Regular bidding zone reviews → first attempt by ENTSO-E (2018) received some criticism

- Some liberty for member states to move to finer spatial granularity in the intraday market → Polish move to nodal pricing

https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit Netzreserve/Netzreserve-node.html