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 Introduction 

The construction, operation and maintenance of buildings collectively are responsible for 36% of 

global final energy consumption and 39% of total direct and indirect energy-related CO2 

emissions in 2017 (Global Alliance for Buildings and Construction, 2018). Energy demand from 

buildings is expected to continue to rise. The main driving factors include a growing population, 

improved access to energy in emerging economies and developing countries, greater ownership 

and usage of energy-consuming equipment and devices, and rapid growth in the floor area of 

buildings. Operational emissions from buildings in 2018 reached a record high of 9.6 gigatonnes 

of CO2 as a result of the demand for building energy services growing at a faster pace than the 

decarbonisation of power generation for consumption of electricity and commercial heat (IEA, 

2019b). 

 

There exist enormous opportunities for energy savings and emission reductions from the 

operation of buildings, many of which are immediately available, highly cost-effective and often 

associated with significant co-benefits (IPCC, 2014; World Bank, 2014; IEA and IPEEC, 2015). 

Globally, widespread deployment of the best available technologies and effective implementation 

of energy efficiency policies have the potential to yield annual savings of approximately 53 EJ by 

2050 in the final energy consumption of buildings (IEA and IPEEC, 2015). This equates to a 29% 

reduction in projected building energy consumption relative to the business-as-usual scenario in 

2050, a level equivalent to the sum of building energy consumption in China, France, Germany, 

Russia, UK and US in 2012 (IEA, 2015), or nearly three-quarters of global electricity demand in 

2014 (IEA, 2015, 2016, 2017; IEA and IPEEC, 2015). 

 

However, the progress towards energy savings and emission reductions in buildings achieved 

by the international community so far has been limited and inadequate (Global Alliance for 

Buildings and Construction, 2019). This has resulted in the building sector being listed as well 

"off-track" of the pathway required to achieve the IEA's Sustainable Development Scenario (SDS) 

and the goal of the Paris Agreement (IEA, 2019a). While energy use per unit floor area in 

buildings has been falling, the annual rate of reduction has actually been slowing over the last 

few years, from around 2% in 2015 to around 0.6% in 2018. Such rates of improvement are far 

from being sufficient to offset the annual increase in global building floor area, which between 

2017 and 2018 was 2.5% (IEA, 2019b). To bring buildings "on track" with the SDS, the annual 

rate of building energy intensity reduction globally would therefore need to increase to at least 

2.5%. Achieving this high-level target suggests a pressing need for expansion, strengthening and 

enforcement of mandatory building energy codes and standards, accelerated and scaled-up 

adoption of advanced technologies and best practices in new construction and retrofits, and 
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enhanced access to finance to leverage more investments in sustainable buildings in the market. 

All these actions call for strong commitments from governments and specific policy measures 

that are well designed and effectively implemented. 

 

Ex-ante evaluation is an integral part of designing policies relating to energy savings and 

emission reductions in major energy end-use sectors such as buildings and construction sector. 

Modelling plays a key role in the evaluation process by allowing for the investigation of the 

trajectories of energy and emissions and enabling experimentation with potential policy 

interventions, therefore exploring possible pathways towards transformation to a highly energy 

efficient and low-carbon buildings and construction sector. There are a range of modelling 

paradigms applicable to model building stock performance and analyse energy saving and 

carbon emission reduction potential, either from a top-down perspective or a bottom-up 

perspective. This paper focuses specifically on one particular methodology, System Dynamics, 

which has been used in multiple settings. System Dynamics is a powerful modelling approach to 

policy design and analysis, featuring a capacity to model and investigate dynamic complexities 

arising from the model structures, causal relationships, feedback loops, non-linearities and time 

lags of the system in question (Sterman, 2000; Richardson, 2001; Shepherd and Emberger, 2010; 

Kelly et al., 2013). Its emphasis on stock-and-flow dynamic relationships makes System 

Dynamics particularly well placed for use as a tool to model building stock energy and carbon 

performance. In turn, this performance is determined by stock turnover dynamics, increased 

energy demand due to incoming new buildings that are energy efficient, decreased energy 

demand due to removal of inefficient old buildings, and gains in energy savings through energy 

retrofits involving building envelopes and systems. The use of System Dynamics in buildings-

related studies has been gradually increasing in recent years. Up until 2010, just two studies 

have been identified, which focused on qualitative causal loop diagrams and decision-making 

relating to buildings and construction (Groesser, Ulli-Beer and Mojtahedzadeh, 2006; Groesser 

and Bruppacher, 2007). Since 2010, there have been a number of models developed to carry out 

national-level building stock energy analysis (Müller and Ulli-Beer, 2010, 2012; Schmidt, Jäger 

and Karl, 2012; Yücel, 2013; Onat, Egilmez and Tatari, 2014; Fazeli and Davidsdottir, 2015, 2017; 

Kleemann, 2016; Nachtrieb et al., 2017). There are also a few studies applying System Dynamics 

to model building physics at a detailed level (Xing, Lannon and Eames, 2013; Motawa and 

Oladokun, 2015). This paper aims to present a detailed critique of the fundamental structural and 

behavioural characteristics of existing System Dynamics models focusing specifically on building 

stock dynamics and energy performance. It then develops an improved model with high 

transparency enabling reproducibility and improvements, great flexibility for structural and 

functional extensions, and high generality and adaptability for applications in a wide variety of 

built environment contexts. 
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The rest of this paper is organised as follows. Section 2 reviews existing System Dynamics based 

models for building stock and energy use and identifies and analyses some common structural 

and behavioural features that lead to unrealistic results. Section 3 then describes the proposed 

new model in detail and explains how it contributes to addressing the methodological limitations 

of previous models, while Section 4 summarises and concludes the paper. 

 

 A review of System Dynamics models for the building sector 

Energy models can be broadly grouped into two categories, "top-down"  and "bottom-up" (van 

Vuuren et al., 2009; Herbst et al., 2012; Scrieciu, Rezai and Mechler, 2013; Hall and Buckley, 

2016). Energy models for buildings, a major energy end use sector, can be similarly categorised 

(Swan and Ugursal, 2009; Kavgic et al., 2010; Fazeli and Davidsdottir, 2017). Top-down building 

energy models treat the target building stock (such as the residential sector of a country or city) 

as an energy sink, without differentiating between individual end-uses. Using historical 

aggregated data on building energy consumption, top-down building energy models regress the 

energy consumption of building stock as a function of high-level demographic, macroeconomic, 

and climate related variables. Energy consumption can therefore be attributed to the 

characteristics of the entire building stock. This makes top-down models generally well positioned 

to conduct long-term energy demand and supply analysis, but not in the presence of 

discontinuities, such as paradigm shifts of the target building stock, energy-related technological 

advances or breakthroughs, etc (Swan and Ugursal, 2009; Hall and Buckley, 2016). Bottom-up 

building energy models, by contrast, are based on detailed samples of individual buildings 

instead of the entire building stock. Estimated energy consumption of samples of buildings is 

then extrapolated to represent the building stock, based on weights that reflect the 

representativeness of the samples. Bottom-up building energy models can be broadly divided 

into two subcategories, namely, statistical methods and engineering methods. Statistical methods 

utilise data from energy bills and surveys of a sample of buildings to establish statistical 

relationships between energy consumption and a range of potential explanatory variables 

through regression. A notable advantage of statistical methods is the ability to discern the effect 

of occupant behaviour, which can vary significantly. Engineering methods, on the other hand, 

explicitly calculate energy consumption of end-uses based on detailed descriptions of the 

sampled buildings' properties, such as geometry and envelope, and the energy end uses' 

characteristics such as capacity ratings and use patterns of equipment and appliances, indoor 

temperatures, etc. Such a high level of detail, as well as a high degree of flexibility, enable 

engineering methods to model technological options and the impacts of new technologies which 

have no historical consumption data (Swan and Ugursal, 2009; Kavgic et al., 2010; Lopes, 
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Antunes and Martins, 2012; Wilson et al., 2016).  

 

A more detailed discussion of top-down and bottom-up building energy models is beyond the 

scope of this paper. It is, however, useful to highlight that, according to the IPCC AR5 (Lucon et 

al., 2014), top-down/integrated models and bottom-up/sectoral models do not fully agree with 

regard to the extent of the mitigation potential of buildings and the key mitigation strategies. Top-

down models place a greater focus on energy supply-side measures for decarbonisation (e.g. 

fuel switching) than on final energy use reduction opportunities in buildings. By contrast, bottom-

up models emphasise the reduction of energy demand for both primary fuels and electricity 

through technologies for energy efficiency improvement, which is supplemented by further 

measures such as the shift towards low or zero carbon electricity.  

 

This paper focuses specifically on building energy models developed using System Dynamics. 

While usually addressing regional or national building stocks, due to the common approach of 

extrapolating the energy use of a representative set of buildings to the total energy use of regional 

or national building stock and not quantitatively involving the interrelations between building 

sector energy use and economic variables such as economic growth, income, fuel prices and so 

on, these existing System Dynamics based models for building sector energy use may be 

classified as bottom-up models (Swan and Ugursal, 2009; Kavgic et al., 2010; Fazeli and 

Davidsdottir, 2017).  

 

Previous such System Dynamics based building energy models have been applied in various 

national or regional contexts. One such model was developed by Müller and Ulli-Beer (2010) to 

analyse the transformation of Switzerland's stock of residential buildings towards high energy 

efficiency. The same model was also used by the authors as part of a larger model to explore 

how the market, technology, civil society and the state govern the diffusion dynamics of energy 

efficiency retrofits and the carbon emissions of building stock in Switzerland (Müller and Ulli-Beer, 

2012). With a high level of aggregation, the model defines buildings in the stock as being in one 

of three conditions, new, good or bad. Over time, buildings move from being in a new condition 

to a good condition and later from a good condition to a bad condition. The shifts are modelled 

as first-order delays, with the assumptions that new buildings remain ‘new’ for 10 years on 

average, buildings in a good condition remain ‘good’ for 30 years on average, and buildings in a 

bad condition remain ‘bad’ and are not retrofitted, for 15 years on average. They used first-order 

delay in order to take account of variations in building-specific situations. However, 

mathematically this results in unrealistic extremities where some buildings move from new to bad 

condition in just a few years, while some other buildings remain in new or good condition for very 

long periods. Meanwhile, the model does not consider the removal of buildings, despite the high 
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share of buildings in a bad condition in the total stock. This implies a very long building lifetime 

which is not further discussed in the study. The model further assumes that buildings in a bad 

condition are either retrofitted to reach the energy efficiency level of buildings in a good condition, 

or are reconstructed to become buildings in a new condition. The use of first-order delays for 

retrofit or reconstruction, together with the first-order delays used for the building aging process 

create a closed loop, which results in unrealistic scenarios where a new building can become old, 

get retrofitted and return again to a bad condition, within a very short timeframe, and 

unrealistically keep going through such cycles. 

 

A similar but expanded model structure was developed by Schmidt, Jäger and Karl (2012) to 

study the German residential heat market in. Compared to Müller and Ulli-Beer (2010), this model 

applied a demolition quota to model demolition of buildings in poor condition, which reflects reality 

more closely. However, the same three-vintage first-order structure is used to represent the aging 

process of buildings. As for retrofit, buildings in a poor condition, according to a defined retrofit 

quota, will undergo either non-energy-related retrofit or energy-related retrofit, and subsequently 

be converted to buildings in good condition. Again, this retrofit dynamic is modelled using first-

order delay resulting in the same problem of a potential rapid cycle of condition deterioration and 

retrofit as observed in the previous model. Inevitably, this has implications for the modelled heat 

demand of buildings and the evolution of heating systems on the supply-side, which are 

interlinked in their model through heating demand reduction. The three-vintage first-order 

structure was also used by Yücel (2013) to investigate the extent of inertia caused by the existing 

building stock in the Netherlands. The first stock is for newly constructed buildings for 20 years 

on average, the second stock for medium-stage buildings for the next 20 years of life on average, 

and eventually the third stock for older buildings for the rest of their lifetimes. Demolition occurs 

to buildings in the third stock only. As in previous cases, this three-vintage first-order setup 

inevitably allows unrealistically short lifetimes of some buildings in the stock – some buildings will 

go through the three vintages in several years and subsequently get demolished. The retrofit 

structure of this model is different from previous models in that there is no movement of retrofitted 

buildings from old to medium-aged or new buildings. Instead, each of the three vintages (new, 

medium and old) undergoes a quota-based energy retrofit. However, as an implicit result, some 

buildings may undergo a very fast aging process, be retrofitted three times, and get demolished 

shortly after the last retrofit. Fazeli and Davidsdottir (2015) used largely the same three-vintage 

first-order delay structure to model the housing stock in Denmark, and to study the impact of 

various policies on the energy performance of residential stock in Iceland (Fazeli and Davidsdottir, 

2017). Despite their claim that their study improved the model of Yücel (2013), the energy 

demand of each vintage of buildings is modelled to reduce as a result of retrofit, thereby resulting 

inevitably in the same methodological issues as found in (Yücel, 2013), with newly constructed 
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buildings potentially experiencing multiple rounds of retrofits over very short lifetimes.  

 

Onat, Egilmez and Tatari (2014) studied the mid- and long-term impacts of green building related 

policies on the possible 2050 trajectories of GHG emissions from the residential buildings in the 

US. They claimed that their study was the first attempt to quantify and outline the relative 

importance of retrofitting compared with constructing new green buildings or net zero buildings 

in the US, modelling a total of 19 policy strategies. Structurally, their model has a lower degree 

of granularity compared with the 3-vintage models discussed above, with just two stocks: existing 

traditional buildings are represented by a single stock, as is the stock representing green 

buildings. The transformation of traditional buildings to green buildings through retrofitting is 

modelled through a first-order delay. Likewise, the demolition of traditional buildings is modelled 

as a first-order delay. This structure unavoidably makes their model subject to the same 

methodological problems as those discussed above.  In addition, the model assumes that green 

buildings are never demolished, despite the fact that the model is designed to study long-term 

impacts.  

 

Kleemann (2016) examined the potential self-attenuation of a residential building energy retrofit 

quota under various energy policy scenarios. The author developed and compared five models, 

including a non-dynamic model of retrofit, a simple dynamic retrofit model, a retrofit cycle model, 

a renovation-retrofit cycle model, and a retrofit chain model. The development from the first to 

the fifth model involved an increasing level of granularity of structural details, greater 

sophistication of logical and mathematical representations, and more plausible and less ad-hoc 

assumptions, which collectively lead to enhanced methodological robustness. However, similar 

to the other models mentioned above, there is a fundamental issue inherent in even the fifth and 

most elaborate version of Kleemann’s models. The first-order delay mechanism used to link a 

stock of buildings retrofitted n times with a stock of building retrofitted n+1 times implies that there 

always exist buildings that can be retrofitted on a continuous basis with very short intervals 

between two consecutive retrofits. Clearly this is not reasonable in reality, either technically or 

economically. 

 

A related issue is the way in which Kleemann’s model handles the demolition of buildings. 

Compared to previous models, demolition is tracked on an age-specific basis, with the ‘age’ of a 

building being relative to the time elapsed since its last retrofit; this is therefore a methodological 

advance compared to previous models. However, it sets the annual demolition fraction of 

buildings, which are either unretrofitted or have been retrofitted for multiple times, as a proportion 

of the annual retrofit fraction, applied to the same buildings. Kleemann’s justification for taking 

this approach is that demolition is an alternative option to retrofit that reacts to the fact that a 
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building has an accumulated ‘retrofit potential’ (which may also therefore be a ‘demolition 

potential’). However, this treatment tends to correlate demolition with retrofit and consequently 

downplays the impact of demolition, which may play a much more significant role in situations 

where building turnover rate is high. In addition, Kleemann's model does not include structures 

or components relating directly to energy, e.g. energy demand or energy consumption of 

buildings, energy savings due to retrofit, etc. What is modelled is indeed simply the "status" of 

buildings being retrofitted. 

 

Nachtrieb et al. (2017) presented a modelling framework for building energy consumption at 

national level, known as the CERC-BEE (Clean Energy Research Center – Building Energy 

Efficiency) Impact Model. Compared to Kleemann's model, the CERC-BEE model is a fuller 

framework where not only building construction and retrofit but also energy end use technology 

adoption are included. However, the way in which building retrofit is modelled by the CERC-BEE 

model is essentially the same as Kleemann's model, namely, periodic retrofit is assumed. The 

flow of retrofitted buildings, from the stock of buildings retrofitted x times to the stock of buildings 

retrofitted x+1 times, is modelled through dividing the stock of buildings retrofitted x times by a 

fixed time between retrofits. Since this again is a first-order delay, it does not rule out the 

possibility that a building retrofitted in a given year is retrofitted again in the immediately following 

year. Also, similar to Kleemann's model, this model assumes that buildings that remain in use for 

over 50 years will undergo energy retrofit five times. As the model's structure contains five cycles 

of retrofit, the five cascading first-order delays technically form a fifth-order delay. Hence, if t0 is 

the initial year when a cohort of new buildings are constructed, the stock representing buildings 

having been retrofitted x times starts to build up from year t0+x+1, implying a certain non-

negligible amount of buildings will undergo energy retrofit once every year, from year t0+1 to year 

t0+x+1. For example, a portion of the new buildings that are constructed and put into use in 2019 

will therefore have been retrofitted five times by 2025. Moreover, while the model uses a hazard 

function to model demolition, an approach more reasonable than Kleemann's method, its setup 

results in the same problem – some buildings will still be demolished immediately after their 

retrofits.  

 

In summary, previous System Dynamics based models for stock-level building energy 

performance share some common structural setups and behavioural characteristics with respect 

to building aging dynamics and energy-related retrofits. From a methodological perspective, 

these are, either explicitly or implicitly, based on assumptions that appear to be questionable or 

implausible in the real world. The 3-vintage structure pre-defines a fixed profile of building lifetime 

distribution which may be significantly different from the reality. A related issue is that buildings 

within a vintage (a stock) are implicitly assumed to be subject to the same risk of being 
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demolished regardless of their actual age and physical conditions. Regarding retrofit as a key 

measure to improve building energy efficiency, it is also unrealistic to see a building undergo 

multiple rounds of retrofits within a short timeframe. Similarly, retrofitting a building soon after it 

is built, or demolishing a building soon after it is retrofitted, makes little economic or technological 

sense in the real world. Although these studies have begun to address some of the stock-flow 

dynamics in the building sector, the identified shortcomings call into question the robustness and 

fidelity of the models, the resultant emergent behaviours in terms of stock dynamics and energy 

performance, and the subsequent analysis of policies based on these models.  

 

From this detailed review, we conclude that although there has been substantial progress in 

developing a first wave of System Dynamics models of building stock energy, important research 

gaps remain. An improved model is needed which will better capture and model building stock 

and energy dynamics, which will, in turn, generate more reasonable and meaningful modelling 

outputs that can inform policy design and evaluation. In Section 3, we further elaborate these 

methodological issues and their implications and explain how they are addressed in our model. 

 

 Model description and discussion 

This section presents an enhanced System Dynamics model for building stock turnover and the 

associated energy performance of buildings. It describes in detail how the model has been 

conceptualised and developed to address the methodological limitations of previous models as 

discussed above. 

 

 Level of stock disaggregation 

The collective salient features of the previous building stock models can be represented using 

the model in Figure 1. Essentially the building stock is composed of 3 vintages (sub-stocks) 

representing buildings that are newly constructed and in their early stage, buildings that are 

relatively aged and in their medium stage, and buildings that are old and in their late stage leading 

to final demolition. Outflows from each sub-stock are modelled using first-order delays. 
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Figure 1: Commonly used 3-vintage structure in previous models 

 

Assuming the delay time for each stage is equal, e.g. 10 years, the setup of cascading the 3 first-

order delays in series creates a third-order delay. Mathematically, the final outflow representing 

building demolition is the convolution of the sequence of first-order delays (Fadali and Visioli, 

2013). Statistically, the distribution of the final outflow is equivalent to the Erlang distribution 

specified by a shape parameter equal to 3 and a scale parameter equal to 10 (Forbes et al., 

2011). These two parameters suggest that the average lifetime of buildings in the stock is 30 

years and the standard deviation is 17.3. Such a model setup implicitly pre-defines a fixed lifetime 

distribution of a cohort of new buildings, without considering that it is highly likely to be different 

from the situation in reality. Even if the delay time for each stage is not set to be identical, as with 

some models, the cascaded third-order delay leads to a unique pre-defined and fixed lifetime 

distribution. Therefore, the problem that the assumed lifetime distribution substantially differs 

from reality remains.  

 

More fundamentally and critically, the first-order delay mechanism for outflow from a stock, as 

commonly seen in the above-mentioned models, implies perfect mixing of the individual elements 

in the stock (Eberlein, Thompson and Matchar, 2012). Once an individual item flows into the 

stock, it immediately gets mixed up with (and becomes indistinguishable from) all other items that 

flow into the stock at the same time and also those existing items that have already been in the 

stock for some time. All items in the stock have the same average residence time in the stock 

and therefore are subject to the same probability of exiting the stock, which is equal to the 

reciprocal of the average residence time, regardless of their age. The same feature is also 

described by statisticians as an exponential distribution having a “lack of memory” or being 

“memoryless”, suggesting that the hazard rate is constant and independent of time and past 

survival experience (Forbes et al., 2011; Liu, 2012). This feature results in an undesired 

consequence that is referred to as “cohort blending” in some contexts. Cohort blending leads to, 

for example, large distortions in simulated mortality and morbidity in chronological aging 

processes in demographic dynamics (Eberlein and Thompson, 2013). 
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Analogously, in the context of building stock, perfect mixing implies that all buildings have the 

same chance of leaving the stock. This means, for example, as in previous three-vintage models, 

all buildings in the early-stage sub-stock have the same chance of moving to the medium-stage 

sub-stock, regardless of their actual age and physical condition. Similarly, all buildings in the late-

stage sub-stock have the same chance of leaving due to physical demolition or functional disuse, 

regardless of their age and physical condition. In practice, it is considered highly unlikely that a 

newly constructed building would be equally likely to be demolished or disused as an old building 

that already has been in use for 50 years. Intuitively, for a given stock consisting of buildings built 

at different times, the probability of buildings leaving the stock would be expected to be higher 

for older buildings than for younger buildings, suggesting a general trend of increasing risk for 

buildings in the stock over time. As an equivalent way of interpreting this logic, it is unrealistic to 

assume that a cohort of new buildings entering a stock would be in service for exactly the same 

time period, say, 50 or 100 years, and then leave the stock due to demolition or disuse 

simultaneously. Uncertainties associated with their lifetimes within the stock shall be taken into 

account appropriately. 

 

Taking account of these concerns, our model disaggregates the aging process of buildings into 

a chain of a series of cascading sub-stocks, each of which represents a particular age group of 

buildings. The fundamental mechanism is that, on the aging chain, the sub-stock j receives the 

outflow of sub-stock j-1 as its inflow, undergoes an aging process, and subsequently sends its 

outflow to sub-stock j+1. It is necessary to explicitly model the removal of demolished/disused 

buildings from each sub-stock to reflect the consideration that each sub-stock of buildings is 

subject to its own specific hazard rate. In addition, it is also necessary to include the residence 

time length of buildings in each sub-stock, which is used to calculate the aging flow rate that 

connects two neighbouring sub-stocks. The residence time length is termed the age group 

duration in the model (Figure 2). Whilst it is also likely that there might be additional inflows to 

the sub-stocks, e.g. reinjection of retrofitted buildings, they are not illustrated here for visual 

succinctness, but will be discussed in detail in later sections.  
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Figure 2: Aging chain with explicit modelling of sub-stock specific demolition 

 

Key to the above aging chain structure is the extent of disaggregation. The question therefore is 

what the appropriate duration of each age group would be. As a sub-stock is used to group 

buildings in an age range, buildings within a sub-stock are considered homogenous. Therefore, 

the aging from this sub-stock to the next one is modelled as a first-order exponential delay 

process. To avoid having the undesirable perfect mixing effect, which is precisely the original 

purpose of applying an aging chain, the duration of each age group is set to be no longer than 1 

year. Setting each age group to 1 year means that buildings do not reside in a sub-stock for 

longer than 1 year before shifting to the next sub-stock. Meanwhile, it would make little sense in 

practice to look at building age at a resolution level finer than 1 year, e.g. 1 month. Therefore, the 

duration of each age group is set to be 1 year. More critically, for this level of disaggregation to 

fully make sense, it is necessary to set the computational interval (dt), namely, the time step of 

the model, to be the same as the age group duration, i.e. 1 year. Technically, the computational 

interval could be finer than 1 year, however this would cause mixing within a sub-stock as long 

as the age group duration is larger than it, such as 1 year. Although the same solution can be 

applied to overcome the mixing issue, namely, by further disaggregating each sub-stock into 

1/(computational interval) sub-stocks, this is not considered practically useful because: (a) 

building age and probability of being demolished/disused estimated at a resolution level finer 

than 1 year would not make much sense in reality; and (b) a significantly larger number of sub-

stocks will be created, inevitably adding excessive details with little extra value and unnecessarily 

increasing model complexity and computational cost.  

 

This setup discretises the chronological aging process. The high level of granularity offers a 

detailed representation of sub-stocks characterised by heterogeneity with respect to factors 



12 

 

affecting building lifetime (and associated energy properties, once additional layers are added to 

the model). It therefore enables the functionality of separately tracking the discretely aging 

process of buildings and experimenting policy interventions targeting buildings of specific age 

groups. For example, given a large stock consisting of residential buildings constructed over the 

past 40 years, a policy-maker may want to know how buildings constructed in 2010 have been 

performing in terms of energy consumption from 2011 to 2019, what the building stock in 2019 

looks like in terms of its composition of buildings of different ages and the corresponding energy 

performance, what would be the possible trajectories of stock-wide average energy intensity from 

2020 to 2030 if an energy efficiency retrofit programme targeting buildings older than 20 years is 

implemented in 2020, and so on. 

 

Using subscripting techniques, the model structure is then re-formulated to improve 

representation and analytical convenience, while keeping the same underlying concept and 

capacity. As shown in Figure 3, the building stock can be viewed as a stack of multiple sub-stocks 

that are not explicitly represented but rather implicitly included. The number of the sub-stocks 

can be flexibly set, depending upon the possible maximum lifetime of buildings in the context 

being investigated. For any given year, the total stock of buildings in use is the sum of the age-

specific sub-stocks. 

 

 

 

Figure 3: Reformulated aging chain structure 

 

This model structure enables setting the age-specific risk (hazard rate) of building demolition 

based on available information and data, as opposed to previous models where the lifetime 

distribution of buildings is arbitrarily pre-defined and fixed. Introducing such flexibility in the 

model’s functionality is significant because it allows context-specific variations to be taken into 

consideration. As demonstrated by Figure 4, for a given pulse input representing a cohort of new 

buildings put into use in 2019, the Erlang-distributed outflow of the 3-vintage model (mean 30 
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and standard deviation 17.3) can be moderately different from that of the disaggregated aging 

chain model. In the latter, the age-specific risk (hazard rate) may be derived from a certain form 

of building lifetime distribution with the same mean (30) and standard deviation (17.3), such as 

Lognormal, Weibull, etc. However, it should be noted that this is an extreme and rare scenario 

most in favour of the Erlang distribution derived from the 3-vintage model. The actual building 

lifetime distribution, which may be approximated by a Weibull, Lognormal or some other form of 

parametric distribution, can be significantly different from this pre-defined Erlang distribution, 

which consequently is a seriously distorted representation of reality. To illustrate this point, 

consider a much less extreme and  more general scenario where the standard deviation of a 

Weibull or Lognormal distribution is different from that of the pre-defined distribution; in these 

cases, the difference in the shape of the demolition distribution as the outflow from the building 

stock is much more pronounced (Figure 5(a)). To further loosen the constrain by allowing a mean 

value different from the per-defined distribution, we obtain the most general and common 

scenario where the actual building lifetime distribution (approximated by a Weibull or Lognormal 

distribution) is significantly different from the pre-defined Erlang distribution, as shown by the 

difference in the shape of annual demolition in Figure 5(b). Inevitably such difference in stock 

aging dynamics, which can be very significant, will be propagated to stock energy performance, 

which in turn will have direct implications for policy analysis. As the stock size and composition 

are fundamental determinants of stock-level energy performance, an overly simplified model 

representation of lifetime distribution and aging process that deviates significantly from what is 

close to the reality is highly unlikely to generate reasonable modelling results and deliver 

insightful policy recommendations. 
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Figure 4: Comparison of outflow profile between the 3-vintage model based on an Erlang 

distribution and the disaggregated aging chain model based on a Lognormal or Weibull 

distribution of building lifetime. Same mean (30) and same standard deviation (17.3) are 

assumed. 
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Figure 5: Comparison of outflow profile between the 3-vintage model based on an Erlang 

distribution and the disaggregated aging chain model based on a Lognormal or Weibull 

distribution of building lifetime. (a) Same mean (30) but different standard deviations; (b) different 

means and different standard deviations. 

 

The outflow is determined by the age-specific hazard rate. Its shape reflects the lifetime 

distribution of the same cohort of buildings. Therefore, provided that sufficient empirical data on 

building lifetime can be obtained, such as through on-site survey targeting demolished buildings, 

the approximate lifetime distribution can be derived for use in the disaggregated aging chain 

model. Alternatively, when lifetime data is limited or unavailable, but data on annual total stock 

size and annual new construction is available, it is possible to calibrate the parameters specifying 

the lifetime distribution function, e.g. the shape and scale parameters of a Weibull distribution.  

 

Thus, going from Figure 4 to Figure 5(a) and further to Figure 5(b), we have taken a progressive 

approach to illustrate the fundamental methodological limitation of those 3-vintage models and 

contrast it with our model, which can overcome this limitation. The highly disaggregated structure 

of our model enables the representation of building lifetime distribution in a significantly more 

realistic manner than the previous 3-vintage models. It offers the functionality of calibrating the 

lifetime distribution (the shape of the curve) based on empirical data, whereas the previous 

models do not, because they pre-defined and fixed the lifetime distribution, such as an Erlang 

distribution. 

 

In summary, in comparison with the 3-vintage first-order delay structure which pre-defines and 

fixes building lifetime distribution, our proposed model setup provides both the high granularity 

and the flexibility necessary for calibrating the building lifetime distribution profile using empirical 

data. 

 

 Dynamics of retrofits for energy efficiency 

The effect of adding new energy-efficient buildings will be limited when there is a very large stock 

of existing less efficient buildings, which creates inertia against stock-wide energy transition. This 

situation calls for energy-related retrofit of existing buildings. Depending upon the strategies 

taken, retrofit has the potential to significantly accelerate the process of transforming a building 

stock to attain a desired level of energy efficiency5. 

 

 

5 This assumes that building operational characteristics and occupant behaviours do not vary significantly. 
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Energy retrofit can be explicitly modelled by adding an additional sub-stock “retrofitted building 

sub-stock”, auxiliary variables and related feedback loops to the original aging chain (Figure 6). 

The inflow to this sub-stock is the amount of buildings at various ages that undergo retrofit, which 

is taken out from the original building sub-stock. In the retrofitted sub-stock, buildings continue 

their aging process while being subject to age-specific hazard rates. They differ from buildings in 

the original sub-stock in terms of their energy intensity levels as the result of retrofit. The age-

specific retrofit rate per year is controlled by a default retrofit profile and a retrofit accelerator 

functioning as a multiplier to model various policy scenarios.  

 

 

Figure 6: Interaction between main and dedicated sub-stocks of retrofit model 

 

The energy demand reduction due to retrofit is represented by an additional outflow applied to 

the energy demand sub-stock of the original co-flow structure (Figure 7). This outflow is 

determined by the amount of retrofitted buildings and the energy intensity reduction achieved by 

retrofit. The latter is modelled as a percentage of the age-specific average energy intensity of 

existing buildings (including both retrofitted and unretrofitted buildings). The percentage is 

controlled by the variable “retrofit depth”, representing the extent to which the energy intensity of 

existing buildings will be improved through a number of possible energy-related retrofit options 

in this context. It is fully recognised that in reality there exist a range of energy-related retrofit 

activities, with considerable variability and uncertainty over the achieved energy intensity 

reduction. As the purpose of this study is to develop a high-level generic model, the granularity 

at the level of specific retrofit activities is beyond the boundary. However, the model has the 
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capability of taking account of the retrofit depth's variability. This can be done through converting 

the retrofit depth from a single value (e.g. 10%) to a distributional profile, which represents the 

share of a certain level of retrofit depth in all practically feasible levels of retrofit depth. For 

example, retrofit activities realising a depth of 5% to 10% accounts for 30%, retrofit activities 

realising a depth of 11% to 15% accounts for 40%, and so on. Such a profile will need to be 

established using empirical data collected from the specific context to which this generic model 

will be applied. In this paper, the generic model uses a single value for retrofit depth just as an 

indicative value. 

 

 

 

 

Figure 7: Dynamics of energy demand of retrofit model 

 

 

So far, the model setup has assumed that a building will undergo at most one energy retrofit 

throughout its lifetime. The possibility that a building may be retrofitted two or more times is 

currently ruled out. This, however, is not necessarily consistent with real world behaviour, 

particularly in contexts where buildings are relatively long-lived. Sometimes for a large stock with 

a significant share of old buildings, strong policies may be designed and implemented to 

accelerate stock transformation by stimulating multiple rounds of retrofit that would not 

necessarily have been carried out otherwise. To accommodate the possibility of multiple retrofits, 

the model is now therefore extended by adding additional variables and functionalities.  
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Key to the multiple-retrofits model is the reinjection of retrofitted buildings back into the building 

sub-stock. Unlike the previous single-retrofit model, where retrofitted buildings stay in the 

retrofitted building sub-stock and undergo aging and demolition process, the retrofitted buildings 

in the multiple-retrofits model only stay in the retrofitted building sub-stock only for a certain period 

of time before being reinjected into the main building sub-stock, which is then a mix of non-

retrofitted and retrofitted buildings. During the period in the dedicated retrofitted building sub-

stock, the retrofitted buildings undergo an aging process as usual, and also continue to be subject 

to age-specific probabilities of being demolished/disused (Figure 8). 

 

 

 

Figure 8: Interaction between main and dedicated sub-stocks of multiple-retrofits model 

 

 

Here, the major purpose of having the dedicated sub-stock for retrofitted buildings is to take into 

account the fact that a newly retrofitted building is highly unlikely to be retrofitted for the same 

purpose again in the short term. This overcomes the issue of too-early retrofits found in previous 

models. Holding these retrofitted buildings in this sub-stock for a certain period prevents this 

situation from happening in our model. The retrofitted buildings in this dedicated sub-stock will 



19 

 

continue to age and may possibly be removed due to demolition, depending upon age-specific 

hazard rates, but will not be retrofitted. The secondary purpose is to take into account the fact 

that a newly retrofitted building is much less likely to be demolished or become disused in the 

short term. Whilst in reality the possibility of being demolished or disused cannot be completely 

ruled out due to various factors, it would be reasonable to assume that newly retrofitted buildings 

are likely to be subject to lower hazard rates than other buildings of the same age which have 

not been recently retrofitted. This is intuitive because building retrofit involves not only 

technological analysis, but also economic evaluation which is more important in practice. The 

decision to retrofit or not has to be informed by cost and benefit analysis. A decision to retrofit 

would not have been made if the decision-maker had known there would not be a sufficiently 

long remaining lifetime of a building to cover the payback period. An equivalent way of interpreting 

this logic is that, given a large sample size, newly retrofitted buildings are expected to have on 

average longer remaining lifetimes than non-retrofitted buildings with the same ages. In addition, 

sometimes an energy-related retrofit activity is carried out as part of a more general renovation 

activity such as structure and facade, which can result in building lifetime extension (Crawford et 

al., 2014) and a reduced hazard rate over the expected remaining lifetime of a building. The 

difference in hazard rate (demolition probabilities) between retrofitted and non-retrofitted 

buildings is accounted for in the model, as discussed below. 

 

As a default setting, the "holding" period of the dedicated sub-stock, i.e. the interval between two 

retrofits, is set at 10 years. This means the dedicated sub-stock is a stack of 11 sub-stocks 

representing 1 year for completing the retrofit and the subsequent 10 years of having the benefits 

of improved energy efficiency while undergoing the aging process. The choice of a 10-year-period 

is indicative. The model allows the length of this period to be changed recognising the variation 

in different contexts and thus the need for adaptation. Under the default setting of a 10-year 

holding period, a retrofitted building enters into the dedicated sub-stock and starts to age for 10 

years with respect to its original lifetime, provided that it will survive to the expiry of the holding 

period. Meanwhile, it also becomes "older" with respect to its post-retrofit age, e.g. 5 years after 

its retrofit. In a sense, this can be viewed as a double-aging process in the dedicated sub-stock. 

For example, by 2025, a 20-year-old building retrofitted in year 2020 will be both 25 years old 

and in the 5th year post retrofit. Provided that this particular building remains in use, when it leaves 

the dedicated sub-stock in 2030 it will be 30 years old and also 10 years post retrofit. To model 

this double-aging process, the model uses a double-subscripting method to denote a building in 

the dedicated sub-stock, i.e. year-after-construction and year-after-retrofit. This process can be 

illustrated using Figure 9. 
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Figure 9: Illustration of “double-aging” process during post-retrofit period 

 

 

As for the demolition, the default hazard profile is set to be the same as the one applied to the 

main sub-stock, e.g. a hazard profile derived from a parametric survival model estimated from 

empirical data. The variable "double-subscripted hazard" is numerically treated in such a way 

that it ensures, in the default scenario, that a t-year-old building that is retrofitted and thus enters 

into the dedicated sub-stock will have age-specific hazard rates for the next 10 years (holding 

period) as if it did not undergo retrofit and remained in the main sub-stock. In other words, the 

default setting assumes that a building's aging process and demolition profile are not changed, 

before and after its retrofit. What have changed are its property (energy performance) and its 

temporary status of not undergoing retrofit over the next 10 years while staying in the dedicated 

sub-stock. As discussed above, it would be reasonably expected that a newly retrofitted building 

will be subject to much lower risk of demolition or disuse, at least during the initial few years after 

its retrofit. The double-subscripted hazard variable can be adjusted to reflect this consideration, 

either arbitrarily or based on empirical evidence. The variable "Demolition (retrofitted) On/Off" 

serves as a switch, with “On” enabling the application of any profile of double-subscripted hazard, 

and “Off” representing an extreme scenario where no demolition/disuse will happen to a 

retrofitted building within the 10-year post-retrofit period. The default hazard profile of retrofitted 

buildings in the dedicated sub-stock is set to be the same as the one for the main sub-stock. In 

real applications, this profile can be flexibly set, for example, to a higher mean value as the result 

of retrofitted buildings' lifetimes being prolonged. The “Off” setting is therefore a special case of 

the flexible hazard profile of retrofitted buildings. In short, various settings can be made to the 

dedicated sub-stock to experiment with different policy scenarios and the resultant dynamics of 

retrofitted buildings and implications for energy performance.  
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Retrofitted buildings surviving to the expiry of the holding period are released and reinjected back 

into the main building sub-stock, where they get mixed with other buildings, including newly 

constructed buildings, old buildings which have never been retrofitted, and those which have 

already been retrofitted once or more. In the main sub-stock, buildings of the same age have the 

same chance of being retrofitted, regardless of whether or not they have already been retrofitted. 

A retrofit profile is applied to different age groups. The default setting takes a simple approach: 

the profile is arbitrarily exogenously defined to be time-invariant. The time-invariance means the 

retrofit rate applied to a specific age group of buildings is not a function of time, e.g. 10-year-old 

buildings in 2019 have the same retrofit rate as 10-year-old buildings in 2029. Depending upon 

modelling assumptions, the profile can be time-variant to reflect policy strengths in response to 

the trend of building stock energy performance. It may also be converted to an endogenously 

defined variable to enable the dynamic interplay between stock energy performance and policy 

interventions.     

 

As afore-mentioned, the default setting of the holding period is fixed as 10 years. This is indicative, 

assuming a constant interval between two retrofits. In reality, retrofit intervals of buildings may 

vary due to a range of technological, economic and social factors. To recognise the uncertainty 

with respect to this parameter, a solution is to create multiple dedicated sub-stocks for retrofitted 

buildings and place them in parallel with the existing one. Each dedicated sub-stock is used to 

keep retrofitted buildings for a different holding period, e.g. a dedicated sub-stock with 12 

vintages is for 11-year holding period, a dedicated sub-stock with 13 vintages is for 12-year 

holding period, and so on. Then the to-be-retrofitted buildings flowing into the original dedicated 

sub-stock can be distributed across these parallel dedicated sub-stocks, based on some 

distribution profile. For example, a total of 11 dedicated sub-stocks may be used to represent the 

range of 10-year to 20-year holding periods, with the first one having 11 vintages and the last 

one having 21 vintages. As an initial setting, the inflow into these sub-stocks may be distributed 

uniformly. When empirical data is available and sufficient, a distribution better describing the 

probability densities of various length of the holding period may be informed. Such a more 

sophisticated setup can be easily reduced back to the original default version by adjusting the 

distribution so that all to-be-retrofitted buildings will flow into the first dedicated sub-stock, namely 

the original one with 11 vintages (10-year holding period).  
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Figure 10: Dynamics of energy demand of main sub-stock of multiple-retrofits model 

 

 

Similar to the settings for building stock, the (operational) energy demand of buildings is 

represented by using two sets of sub-stocks, with one for the main sub-stock and the other one 

for the sub-stock dedicated for retrofitted buildings experiencing the holding period. Compared 

to a regular co-flow setup, the energy demand of main sub-stock features an additional outflow 

of energy demand reduction due to outflow of buildings undergoing retrofit, and an additional 

inflow of energy demand increase due to reinjection of retrofitted buildings having survived the 

holding period (Figure 10). The outflow is determined by the amount of retrofitted buildings per 

year and the age-specific average energy intensity per year. It is useful to note that this outflow 

by itself is the sum of the outflows of energy demand reduction applicable to each of the age 

groups. As for the inflow, it is the total amount of energy demand of retrofitted buildings at all 

ages that survive their 10-year holding period and return to the main sub-stock of buildings. This 

inflow links the energy demand of main sub-stock with the energy demand of the sub-stock 

dedicated to retrofitted buildings, which has the typical structure of co-flow mirroring the structure 

of the sub-stock dedicated to retrofitted buildings themselves (Figure 11). This sub-stock is also 

double-subscripted to reflect the energy performance as a property of the retrofitted buildings 

experiencing the double-aging process. The inflowing energy demand into this sub-stock is a 

function of expected energy intensity of retrofitted buildings, which is a key target of policy 
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interventions.  

 

 

 

Figure 11: Dynamics of energy demand of dedicated sub-stock of multiple-retrofits model 

 

As a simple approach, the default setting of the model is for the expected energy intensity of 

retrofitted buildings to be equal to the age-specific average energy intensity of existing buildings 

(including both retrofitted and unretrofitted buildings) minus the energy intensity reduction gained 

through retrofit. The gain is a percentage of the age-specific average energy intensity of existing 

buildings (including both retrofitted and unretrofitted buildings). The percentage, termed “retrofit 

depth”, represents the extent to which the energy intensity of existing buildings will be improved 

relative to itself as a result of retrofit. There are, of course, many factors contributing to the large 

variability and uncertainty with respect to energy intensity of new buildings in the future, technical 

potential and economic viability of retrofitting old buildings, depth of retrofit and associated costs, 

etc. These are context-specific factors and will need to be investigated in more detail when 

adapting and applying the model to a given context. The generic model presented here uses the 

variables "retrofit depth" and "code improvement" as simplified approximations of the impact of 

these factors. 

 

The stock-wide average energy intensity of all buildings is obtained by dividing the total demand 

of all buildings, which is the sum of energy demand of the main sub-stock and that of the 

dedicated sub-stock, by the total floor area of all buildings consisting of buildings in the main 

stock (a mix of non-retrofitted and retrofitted buildings) and those in the dedicated sub-stock 

(retrofitted buildings only). The retrofit profile and retrofit depth have impacts on the stock-wide 



24 

 

average energy intensity and total energy demand, as presented in Appendix A. Meanwhile, in 

the default model setup, the dedicated sub-stock for retrofitted buildings is subject to the same 

hazard profile as the main sub-stock, although this may not be the case in practice. Newly 

retrofitted buildings are unlikely to be demolished in the short term after the retrofit. There is 

expected to be considerable difference in stock-wide average energy intensity and total energy 

demand between the “On” and “Off” setting of demolition profile for the dedicated sub-stock (see 

Appendix B). 

 

 Model limitations and potential extension 

It is acknowledged that the model presented here, as in any models of buildings, energy and 

related sectors, has been developed based on various methodological assumptions to be a 

simplification of the dynamic complexity of real-world building stock evolution and energy 

performance characteristics. These assumptions lead inevitably to limitations inherent to the 

model that should be taken into account when applying the model. Extensions can be made to 

enhance the model's flexibility and applicability. 

 

Firstly, in modelling the effect of retrofit, we assume that building operational characteristics and 

occupant behaviours do not vary significantly; this is a fairly common assumption explicitly or 

implicitly made by many building energy models. These variations may be incorporated into 

future modelling with empirical data and complementary modelling approach such as agent-

based modelling. Secondly, as the model's focus is on energy, our model limits itself to those 

energy-related retrofits. However, it is acknowledged that sometimes general renovation 

activities that are not directly related to energy performance will have a direct impact on building 

lifetime. This resultant extension of building lifetime may have a long-term impact on the interplay 

between the demolition of old and inefficient buildings and the construction of new and efficient 

buildings which together decide the stock-level energy performance. Thirdly, in the current 

version of our generic model, the retrofit depth is set as a single value. In reality there exist a 

range of energy-related retrofit activities and therefore many factors contributing to the variability 

and uncertainty with respect to retrofit depth. This can be taken into account through a very minor 

extension of the model which is to use a distribution profile to represent the share of a certain 

level of retrofit depth in all practically feasible retrofit depths. This extension will require empirical 

data. Fourthly, the holding period of the dedicated substock of retrofitted buildings is set as a 

constant as an intended simplification. In reality, retrofit intervals may vary due to a range of 

technological, economic and social factors. To take this into account, additional structures can 

be easily added to the model to create multiple dedicated substocks in parallel with the existing 

ones as has been described. Each dedicated substock is used to keep retrofitted buildings for a 
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different holding period. This setup enables a distribution of various holding periods, which needs 

to be informed by empirical data. 

 

An overview of this stock turnover and multiple-retrofits model, which presents the dynamic 

interplay across variables, is given in Appendix C. This is presented as a simple generic version 

in order to highlight some key points (stock disaggregation and multiple retrofits) rather than a 

fully-fledged version, which could be used for real-world applications and policy analysis. To 

develop the latter, additional structures and variables still need to be added to the model. For 

example, exogenous drivers of new construction and feedback loops enabling dynamic interplays 

between new construction, aging of existing buildings, and demolition of old buildings reaching 

their end of lifetime could be incorporated in order to model future possible trends of stock 

evolution. In addition, the model boundary may be expanded to cover embodied energy 

consumption and carbon emissions incurred in producing building materials, construction, retrofit 

and demolition activities. Such an extension would enable a lifecycle perspective to be taken 

when evaluating building stock energy performance and carbon emissions.  

 

 Conclusions 

We present a System Dynamics model for characterising building stock turnover dynamics and 

tracking the trajectory of stock-level building energy performance. The model is aimed at 

addressing some of the fundamental structural and behavioural limitations found in previous 

applications of System Dynamics-based models. Specifically, the model uses an aging chain 

structure to represent the dynamics of the aging and demolition of buildings. The age-specific 

demolition rate is modelled based on the concept of the hazard function in survival analysis. The 

model loosens the strong assumptions made by previous models, including perfect mixing in a 

first-order delay in a single stock model, and perfect mixing in each delay of a third-order delay 

in a three-vintage model. By disaggregating a building stock into age-specific sub-stocks, the 

model enables explicit representations of the uncertainties associated age-specific risks of 

demolition and the resultant building lifetime distribution. Compared with previous models, the 

model offers great structural flexibility to accommodate various levels of data availability. 

Moreover, it offers the capacity of calibrating building lifetime distribution using empirical data on 

stock size. Another salient feature is that the model avoids unreasonable situations where a 

building is allowed to undergo multiple rounds of retrofits within a very short period of time, a 

building is demolished soon after being retrofitted, or a building is retrofitted soon after it is 

constructed and put into use.  

 

The model is generic, transparent and therefore potentially applicable to a wide variety of 
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contexts. Its flexibility enables adjustments to meet various requirements and settings. On the 

one hand, the model can be extended to accommodate increased granularity and enhanced level 

of sophistication, or expanded boundary of modelling. Structurally, with available empirical data, 

the sub-stocks of retrofitted buildings can be further divided to model various lengths of the 

holding period. Functionally, depending upon model purpose, additional structures and variables 

can be added to the model to enhance its utility, such as feedback loops linking demolition and 

new construction to model future stock growth, embodied energy and carbon due to production 

of building materials, building construction, retrofit and demolition activities, stock of existing 

heating technologies and possible future trends of technology mix to model carbon emissions of 

heating. On the other hand, sometimes building demolition is of less concern, e.g. buildings are 

generally long-lived and/or the period of modelling and analysis is short relative to building 

lifetimes. In these circumstances, the model can be straightforwardly reduced to a three-vintage 

or single stock structure as found in existing literature. Similarly, the multiple retrofit dynamics 

can be easily reduced to single retrofit or no retrofit structure, but retain the ability of avoiding 

unrealistic modelling results of previous models. The reduced form version of the model will be 

useful when the interest of modelling is in general behavioural dynamic patterns of building stock 

and energy, rather than in detailed representation of model structures and variables for accurate 

numerical values of stock or sub-stock level performance indicators.  

 

In conclusion, we believe that our model is well placed to be used as a stand-alone model or as 

part of a larger model looking at building stock-level energy and carbon emissions in a variety of 

national or sectoral contexts. Its transparency and flexibility will enable further extensions and 

improvements for greater capacity in wider applications for evaluating policy interventions 

targeting transforming buildings towards greater energy efficiency and low carbon development. 
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Figure 12: Impact of retrofit rate on stock-wide average energy intensity (retrofit depth = 

15%) 

 

 

 

 

Figure 13: Impact of retrofit depth on stock-wide average energy intensity (retrofit rate = 

0.05) 
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Figure 14: Impact of retrofit rate and depth on total energy demand of entire stock 
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(Figure 15). The retrofitted buildings are more energy efficient, thereby contributing to lowering 

the stock-wide average energy intensity (Figure 16). The total energy demand may increase 

or decrease depending upon the varied stock size and average energy intensity. In this case 

for illustration purpose only, the effect of increased stock size exceeds that of the lowered 

average energy intensity, therefore leading to increase of total energy demand of the entire 

stock (Figure 17). 

 

 

 

 

Figure 15: Impact of demolition profile of retrofitted buildings on overall stock size 
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Figure 16: Impact of demolition profile of retrofitted buildings on stock-wide average energy 

intensity 

 

 

 

 

Figure 17: Impact of demolition profile of retrofitted buildings on total energy demand 
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Appendix C: Full model of building stock turnover and energy retrofits 

 


