Outlook for electrolytic hydrogen production - insights from systems
“modeling
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Renewed interest in H, or H,-derived carriers to enable decarbonization of end-uses where

direct electricity use may be challenged

Global hydrogen use in the IEA Net Zero by 2050 emissions scenario

Onsite -

100% Other
Refineries
M Iron and steel

80% M Chemicals - Industry

Merchant
Other

60%  mRefineries

Industry

0 Shipping
40% Aviation — Transport
M Road —
20% Buildings o
W Electricity generation } Electricity

m Blended in gas grid

2020 2025 2030 2035 2040 2045 2050 Low-carbon share

P
»

M ITe ,\ Figure source: Figure 2.19, International Energy Agency, Net Zero by 2050: A Roadmap for the Global Energy Sector, 2020

> JWir



Growing interest in electrolytic H, production, with declining costs, policy support, and
prospect of increasing renewables penetration in the electric grid

Proton exchange membrane (PEM) electrolyzers
- High current density range vs. alkaline
- Differential pressure operation —high Pressures H,

product

- Greater operational flexibility
- High Iridium loadings (~1-2 mg/cm?2)23
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PEM Electrolysis
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Significant Technology Improvements Required for PEM electrolysis to meet 2030 H2
production targets

(a) IRENA-25 Mt H, in 2030 (b) IEA-83 Mt H, in 2030
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Two bookends for electricity sourcing for electrolytic H, production

< Grid
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Emissions outlook
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Grid-connected processes that contract low-carbon electricity supply are likely to be the
norm — why?

VRE resources unrelated ’ Electrolyzer
to H2 production ~~~ Grid

H2 to end-use
customer
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VRE resources contracted i
for H2 production :
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Favorable aspects:

Locational flexibility for chemical plant and VRE resource
Improved utilization of contracted renewable asset

Allow electrolyzer to participate in electricity market
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What are the cost and emissions impact of this approach?

VRE resources unrelated ' Electrolyzer

to H2 production S - * -
. R H2 to end-use
o . customer

VRE resources contracted ?
for H2 production :
@ N :
System-level factors Contract structure Technological factors
«  Grid-centric policies « Additionality definition * Process energy use and
« Electricity demand growth «  Temporal matching flexibility characteristics
« Technological evolution « Spatial matching * Renewables intermittency
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Integrated energy systems analysis can inform the emissions and cost of grid-connected
electrolyzers under different system, contractual and technology scenarios

DOLPHYN

- An Electricity-Hydrogen infrastructure capacity
expansion model’

Overview of DOLPHYN model
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The two additionality frameworks: same non-H2 baseline but different H2 counterfactual

“Compete” additionality definition

Initial grid capacity

(e.g. 2021)
v
Grid Grid resource
* optimization
contracted H,
ine b resource
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Capacity changes due to H2 production - ERCOT case study

Hourly time-matching

“Compete” framework

Changes in Power Capacity Relative to Baseline

“Non-compete” framework

Changes in Power Capacity Relative to Baseline
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Change in Power Capacity (GW)

» PPA VRE displaces non-PPA VRE in “compete” framework
» More PPA VRE capacity for hourly vs. annual
* Flexibility reduces VRE deployment
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Change in Power Capacity (GW)

= Further details in: Cybulsky, Giovanniello, Schittekatte, Mallapragada, Producing hydrogen from electricity: How modeling additionality drives the emissions impact of time-

matching requirements , MITEI Working Paper, 2023
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Generation impacts of H, production under time-matching and additionality requirements

Difference in average hourly dispatch with and without electrolytic H, production
Texas grid case study (2030)
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Additionality definition
primarily impacts annual time-
matching cases

“‘Compete” + annual: net
increases in fossil fuel
generation

“‘Non-compete” + annual:
little change in net fossil
generation

Hourly time-matching: PPA
VRE generation producing
excess electricity at certain
times that can earn additional
revenues by selling to grid
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Additionality framework can alter the emissions impact of H, production

=== PTC Tier 1 limit
PTC Tier 2 limit
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Grid-level emissions impacts of H2 production, ton CO.e / ton H, -Texas grid case study (2030)
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Impact of additionality framework on levelized cost of H, (LCOH) production

H, costs under different additionality and temporal matching scenarios , LCOH in $/ kg H,
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« LCOH (excluding PTC) typically lower under annual matching;
 LCOH (excluding PTC) generally lower in the "compete" vs the "non-compete" framework

» Flexible electrolyzer operation reduces LCOH
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How might system-level factors impact these results? Consider the example of VRE
capacity deployment limits

Generation, Storage, and Hybrid Capacity in Interconnection Queues

Introduction Regional queues Hybrids only Western non-ISO Southeast non-1SO Existing vs. queues

Total Capacity in Queues, 2007 - 2022 Select Region(s) then hit Apply

800K

What happens if we assume total new
. . . [+ | southeast (non-I1SO)
renewables capacity is constrained?

West (non-1SO)

600K 596.4
500K Select cumulative or
— annual additions
E Annual
< Cumulative
£ i
$ 400K
=4 Click to highlight
% 347,6 M Battery (standalone)
. Coal
300K 295,2 M oGas
276,7
257.9 M Geothermal
2336 Hydro
. 200,8 202,0 . I Nuclear
200K Offshore Wind
| | M other
| _ 126,0 126,9 136.3 Other Storage
1102 oo Battery (Hybrid)
100K - 95,39 ) attery (Hybri
—_—
l . —_— . I . . Solar + Battery
Solar + Wind
, HAm 0 =N
oK - . - — - Solar + Wind + Battery
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
W wind
Notes: Wind + Battery
« Hybrid storage capacity is estimated for some projects. Unknown
« Battery storage and all hybrid categories data is from 2018 through 2022. W Other Hybrids

* Reforms in PJM and CAISO paused or slowed new interconnection requests in 2022.
* ERCOT queue data includes only projects that have requested a full interconnection study (FIS).
\  For details on methodology see https://emp.lbl.gov/queues .
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Hourly matching results in positive consequential emissions when renewables deployment
is constrained (“Compete” framework)

Unconstrained wind, solar capacity
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How do various policies impact emissions and costs of grid-connected electrolyzers? View
from the “Compete” world

Limiting annual electrolyzer

capacity factor _
Annual matching

Minimum annual renewable
generation requirement

\// Preliminary results, do not cite, quote or distribute
\
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Summary and recommendations

Emissions from producing electrolytic H, under annual time-matching are conditional upon how additionality
requirement is modeled AND also affected by other system and technology specific policy factors

* AVRE for H2 production << AVRE for grid decarbonization - “Non-compete” world
« Post-2030 volumes of electrolytic H2 are expected to boom and we might enter a "compete" world
« Pragmatic to allow a phased approach,

— Short-term: Start with annual time-matching requirements to qualify as “clean hydrogen”

— Medium term: Shift to more stringent time matching (e.g. hourly) in 2030s as volume of electrolytic
H2 is expected to boom and grid is still fossil fuel dominant

— Long term: As grid substantially decarbonizes, stringent time-matching requirements (e.g. hourly)
may not be necessary
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Questions?
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