

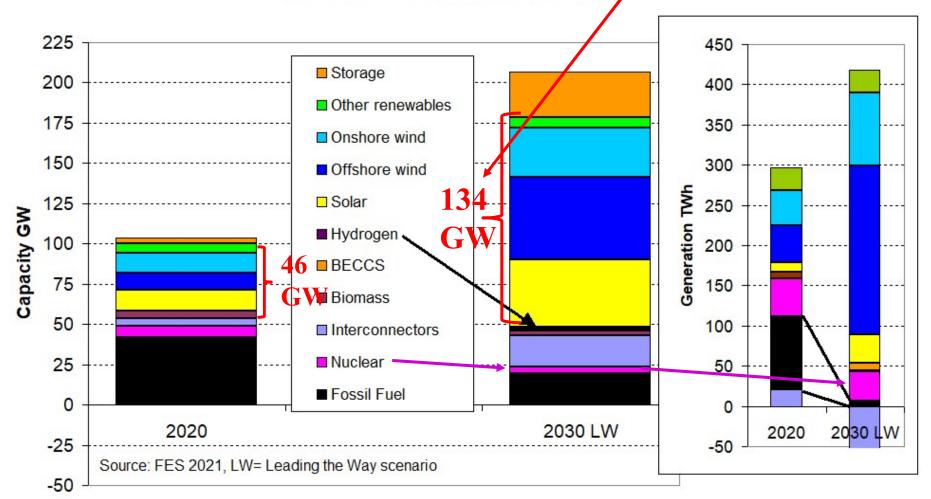
Secure, sustainable and affordable electricity: the challenges

David Newbery, *EPRG, University of Cambridge* 7th GREEK-BRITISH SYMPOSIUM 2023: London

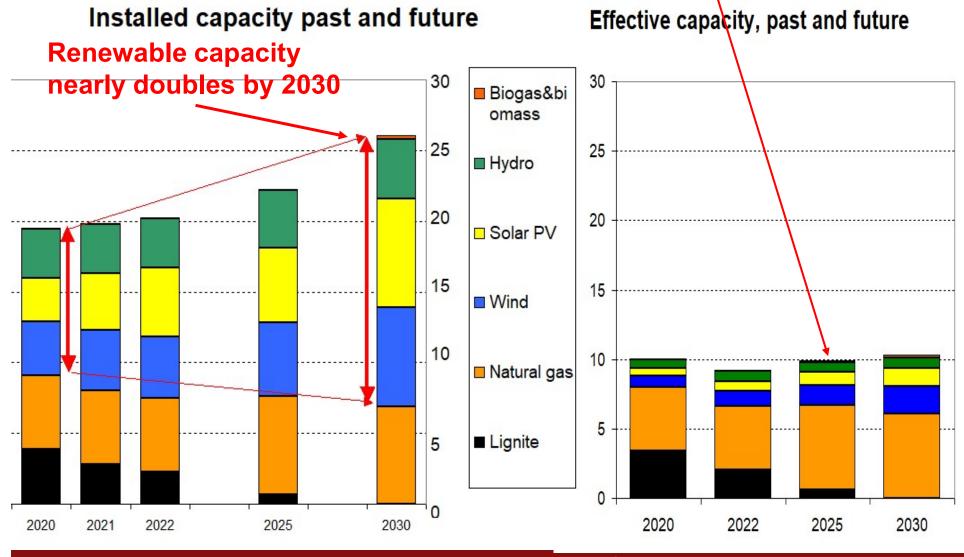
17th October 2023

- Security: renewable electricity (RE) reduces gas imports
- Sustainable: RE reduces emissions
- Affordable: wind & PV now cost-competitive
- Challenges: RE located differently from fossil

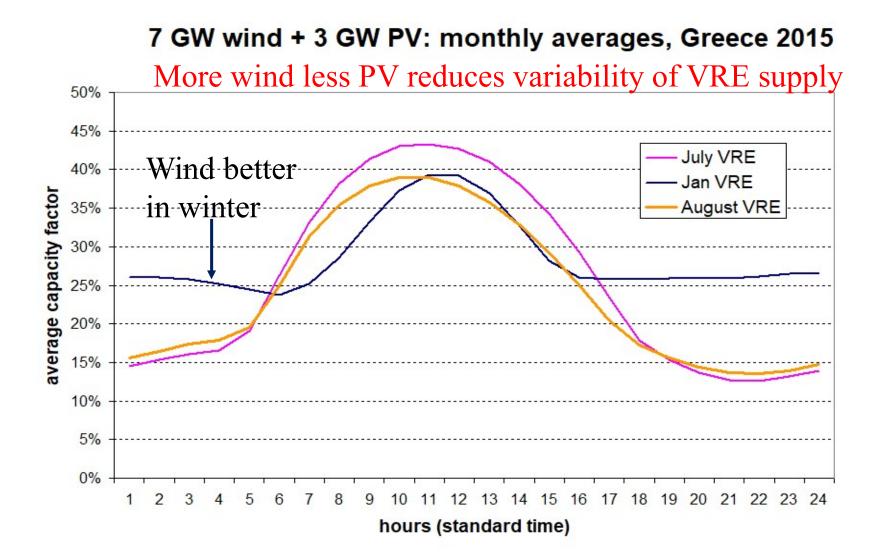
 \Rightarrow needs massive network expansion


 \Rightarrow which needs speedier delivery (permits, acceptance ...)

- Variable RE has high peak to average
 ⇒ curtailment if not stored or exported
- Conclusions

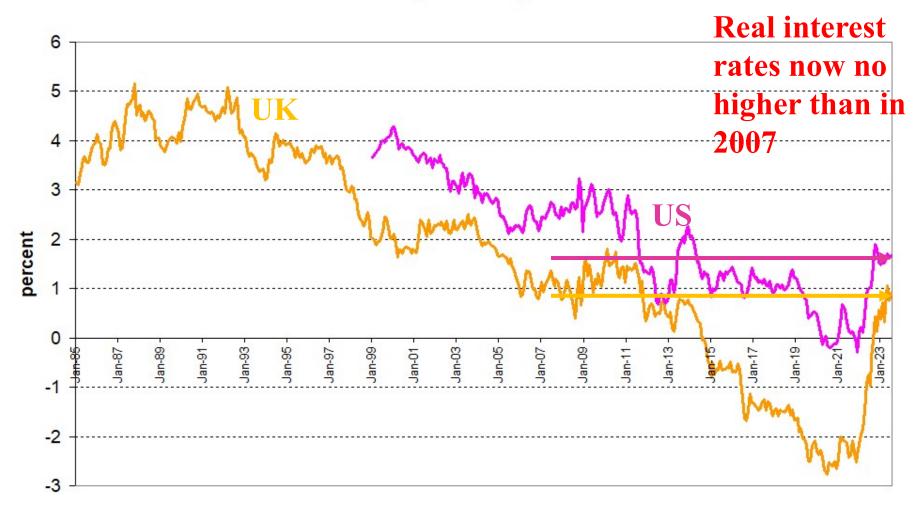

UK renewable electricity capacity to *treble* by 2030

2030 FES Leading the Way



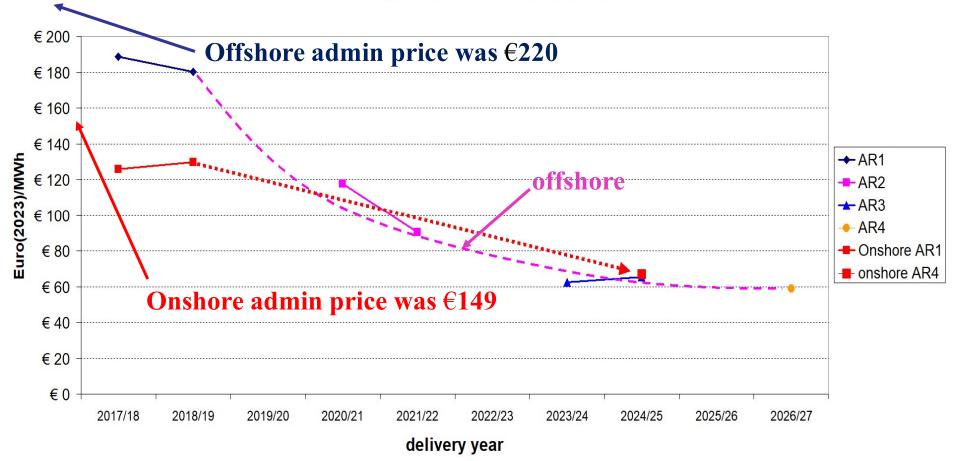
Greek renewables: double installed capacity but *potential* output lower

www.eprg.group.cam.ac.uk


UNIVERSITY OF Energy Policy CAMBRIDGE Research Group Greece has good PV and wind

Cost of capital low

Risk-free forward 10-yr maturity real interest rates


Net Zero messages

- Net zero requires massive investment
- Low-C is capital intensive
 - the key to lowering cost is lowering cost of capital
 - => design good contracts to minimise risk
- Renewables much good reform, more needed
 - Need better hedge against uncertain future prices
- Flexibility: capacity auction + ancillary services
- => Hybrid markets:
 - competition **for** the market (auction LT contracts)
 - then competition in the market
- Massive network investment required
 - => reduce delays, coordinate location choices

Auctions continue to deliver real GB cost reductions

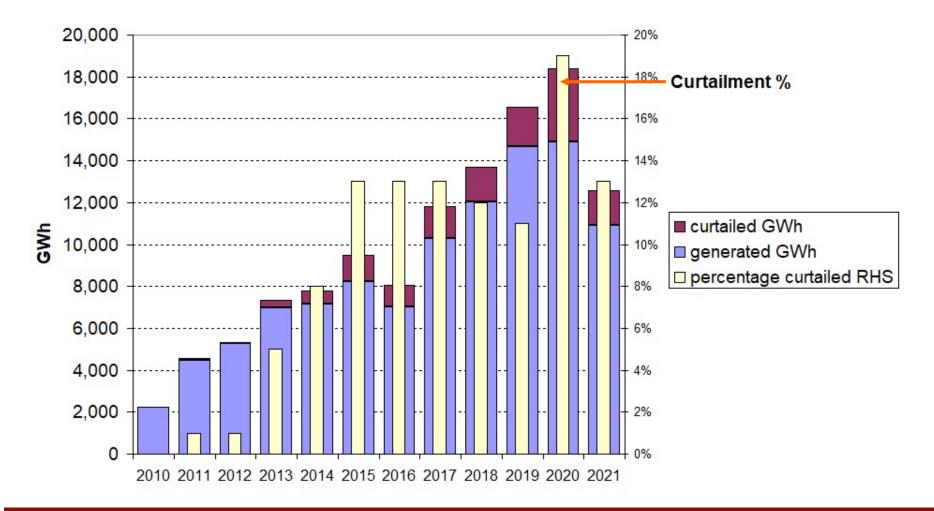
Strike prices for GB renewables

Greek renewables support

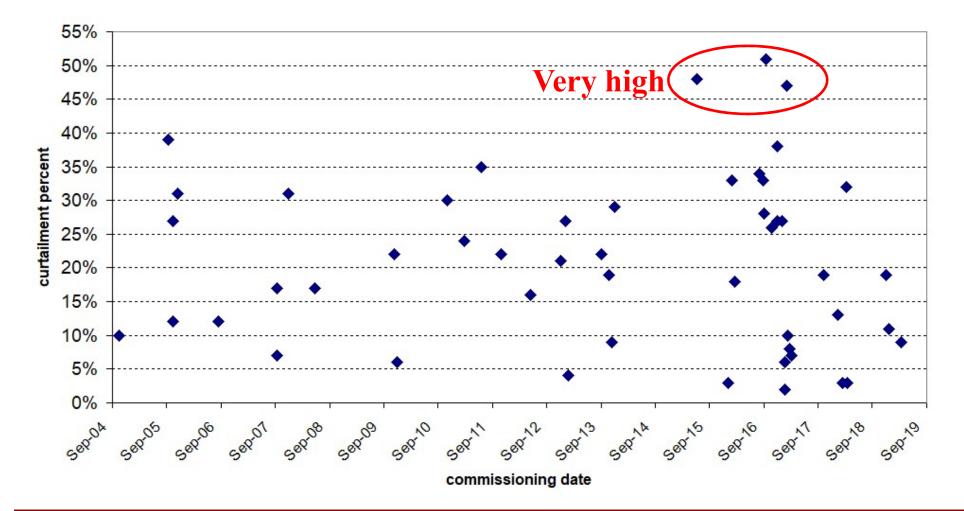
9

- 2017: subsidy on top of wholesale price (Feed-in Premium)
 - Potentially excessive with wholesale price rise
- 2022 Two-sided CfD auctioned
 - average solar PV bid €47.98/MWh
 - average wind bid was €57.66/MWh
- 2023 Storage auction for 411 MW
 - average €49,748/MW/year (range €33,948 €64,122/MWyr)
 - Further wind and PV auctions planned
- 2024 Last CfD auctions: future merchant entry? PPAs?

At present curtailment not a problem but expected to rapidly become one as VRE expands


D Newbery	
www.eprg.group.cam.ac.uk	

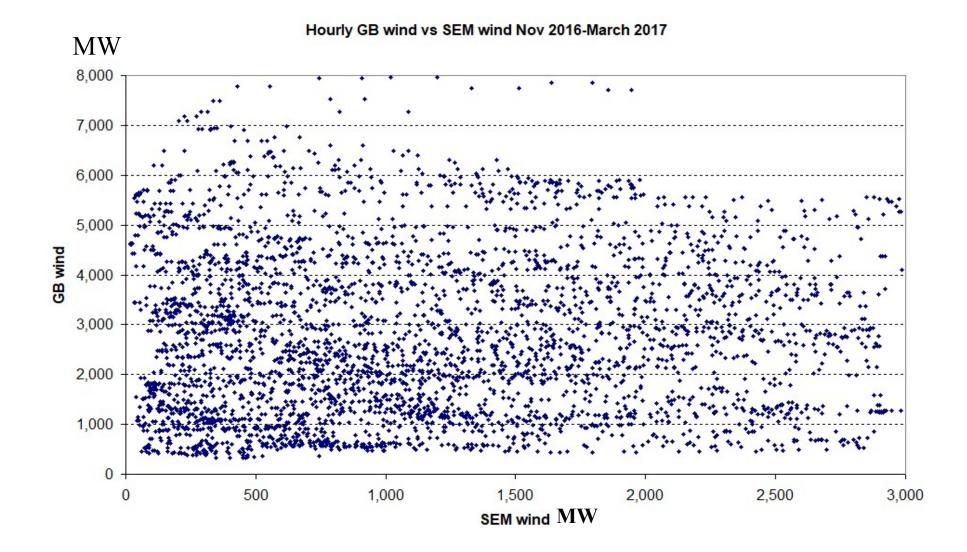
- Peak:average output for wind 2-4:1
 - PV: N Europe 8-11:1, Greece 5-6:1
- \Rightarrow increasing volumes curtailed as VRE rises
- \Rightarrow exacerbated by transmission constraints
- Marginal curtailment is 3+ times average
- \Rightarrow critical to locate new VRE in uncongested nodes
- \Rightarrow need strong locational connection signals
- \Rightarrow and integrated network and generation location planning


Transmission congestion curtails Scottish wind

Evolution of wind curtailment in Scotland 2010-2021

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group CAMBRIDGE Research Group

Curtailment in 2020 by commissioning date of Scottish wind farms

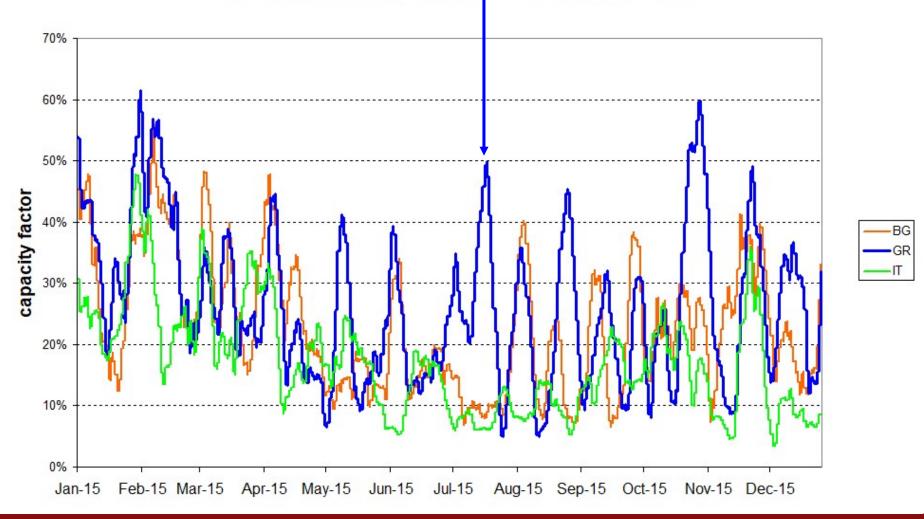


- Surplus can be shifted over time and space
- Time: by **storage** or demand side response
- Space: by **interconnecting** with uncorrelated markets
 - If wind is mainly from SW, connect east and west
 - Works for PV as well
- GB: Scotland could export to Norway (hydro helps)
 - but needs right price signal, zonal not GB-wide pricing
- Ireland exports to GB
 - Wind 4 hours later in GB, trade helps each country

Timely network expansion critical to accessing VRE

SEM wind *appears* uncorrelated with GB wind – **interconnection good?**

GB follows SEM wind with 4-hr lag => short-term benefit for each


SEM and 4-hr lagged GB relative wind Jan-March 2018

www.eprg.group.cam.ac.uk

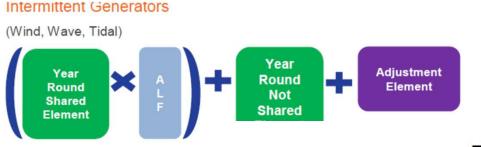
UNIVERSITY OF Energy Policy CAMBRIDGE Research Group Summer wind in Greece can be exported to neighbours

weekly average wind BG, GR, IT, 2015

Internal transmission will also have to be strengthened

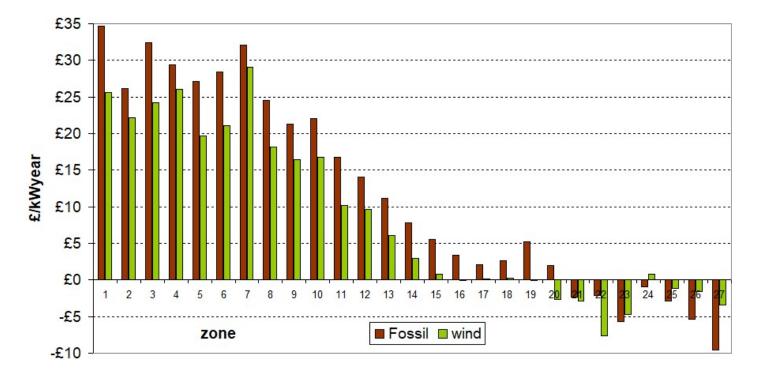
UK *Review of Electricity Markets* Consultation 2022

• "market forces alone are currently unable to deliver our objectives"


=> Need a change in market design and network operation for the Energy Transition

- Objective least system cost
 - Getting investment location right is most important
 - Followed by least-cost dispatch
- => reform grid locational signals
 - And VRE support schemes
- => Reform investment and dispatch signals

Good contract design and grandfathering solves most transitional problems


Current GB transmission charging methodology

Problem: Investment Cost Related Pricing assumes instant incremental adjustments

TNUoS Tariffs 2021-22

Problem: charges **annually reset**, discourages substantial necessary changes

Guiding location decisions: different approaches

- GB set locational TNUoS to guide location
 - Now: reset annually to move towards long-run marginal cost
 - Alternative: offer contracts to new entrants to guide location
- Other approaches:
 - Island of Ireland proposes non-firm connection until grid expanded
 - Greece 2022: grid can deny grid connection for up to 6 months
- IEA Greece 2023 Energy policy review recommends:
 - government to identify priority locations for least system cost
 - balancing cultural social and environmental issues

Plan transmission; guide new entrants

- Aim: minimise cost of finance while ensuring market responsiveness
- Pay for **capacity** not output for efficient technology choice
 - \Rightarrow Costs are up-front, running costs independent of market prices
- \Rightarrow Efficient market prices guide efficient investment, location and output
- \Rightarrow Or offer suitable sites for new entrants

Designing long-term low-risk VRE contract

- Current VRE contracts pay fixed price **s** for metered output
- Standard CfD requires specifying contract independent of output
 Senerate if price>variable cost, not if not (buy cheaper from the market)
- => Make contracted amount = **forecast output**/MW of wind/PV
- Limit number of full operating hours to remove location distortion
 - E.g. 40,000 MWh/MW (see (BEIS p59 fn 31, p80 = deemed generation)
- Auction to determine strike price s for new contracts
- **Grandfather** existing contracts as location decision has been made

Newbery

- Simplifies constraint payments pay on forecast potential output that count to full operating hours
 - => pays back full expected revenue => lowers risk and cost
- Reduces excessive infra-marginal rent from high value sites
 - clearing price set by most expensive offer
 - was a serious problem with premium support schemes
 - efficient transmission charges remove much infra-marginal rent
 when strike prices near LRMC of VRE

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group Conclusions: market design

•Zero carbon electricity: high capital cost, low variable cost

- \Rightarrow Long-term hedges to lower finance cost (missing futures markets)
- Hedges: independent of actual output => respond to market
- => CfD with FiT for VRE good but can be improved
 - capacity not output support to hedge up-front costs for low WACC
 - location and dispatch price signals guided by market, not support prices
 - => hedge set not by metered output but forecast output (*yardstick pricing*)
 - contract specified for *full operating hours, not years*

Long-term transmission contracts

– plus grandfathering for smooth transition and hedging

Concentrate on network investment, interconnectors and storage

Secure, sustainable and affordable electricity: the challenges

David Newbery, *EPRG, University of Cambridge* 7th GREEK-BRITISH SYMPOSIUM 2023: London

17th October 2023

- BEIS Review of Electricity Market Arrangements: Consultation Document at
 <u>https://www.gov.uk/government/consultations/review-of-electricity-market-arrangements</u>
- Eicke, A. & T Schittekatte, 2022. Fighting the wrong battle? A critical assessment of arguments against nodal electricity prices in the European debate, MITEI-WP-2022-01
- FTI's presentation at <u>https://www.strommarkttreffen.org/05_Jason%20Mann%20and%20Ljubo%20Mitrasevic%20(FTI%20</u> <u>Consulting)_%20Cost-Benefit-</u> <u>Analysis%20of%20moving%20to%20zonal%20or%20nodal%20electricity%20market%20design%20</u> <u>in%20GB.pdf</u>
- Newbery, D. 2021. National Energy and Climate Plans for the island of Ireland: wind curtailment, interconnectors and storage, *Energy Policy* 158, 112513, 1-11. <u>https://doi.org/10.1016/j.enpol.2021.112513</u> also EPRG WP2020 at https://www.eprg.group.cam.ac.uk/eprg-working-paper-2020/.
- Newbery, D., 2021. Designing efficient Renewable Electricity Support Schemes, at https://www.eprg.group.cam.ac.uk/eprg-working-paper-2107/
- Newbery et al., 2022 Response to REMA at https://www.eprg.group.cam.ac.uk/wp-content/uploads/2022/10/REMA-consultation-questions-.pdf
- Newbery, D., 2022 Commentary on REMA at https://www.eprg.group.cam.ac.uk/wp-content/uploads/2022/10/Newbery-Response-to-REMA-.pdf
- Newbery, D., 2023. High wind and PV penetration: marginal curtailment and market failure under "subsidy-free" entry, *Energy Economics*, 126 (107011), 1-11, doi: <u>https://doi.org/10.1016/j.eneco.2023.107011</u>

D Newbery

- CfD: Contract for Difference
- E(F)SO Electricity (Future) System Operator
- FiT Feed-in Tariff sets price paid
- FTR Financial (Physical) Transmission Right
- LT Long-term
- PPA Power purchase agreement
- RE Renewable electricity
- REMA: Review of electricity market arrangements
- RO(C): Renewable obligation (certificate)
- SEM Single Electricity Market of island of Ireland
- TNUoS Transmission Network Use of System
- VRE: variable renewable electricity, i.e. wind and solar PV

